
Riotkit-Do: Universal automation
(DevOps) tool for elastic, shareable

tasks and pipelines
Release 0.0.35

Riotkit

Oct 19, 2021

CONTENTS:

1 Example use cases 3

2 Install RKD 5

3 Getting started in freshly created structure 7

4 Create your first task with Getting started 9

5 Check how to use commandline to run tasks in RKD with Commandline usage 11

6 See how to import existing tasks to your Makefile with Importing tasks page 13

7 Keep learning 15

Index 103

i

ii

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

RKD is a stable, open-source, multi-purpose automation tool which balance flexibility with simplicity. The primary
language is Python and YAML syntax.

RiotKit-Do can be compared to Gradle and to GNU Make, by allowing both Python and Makefile-like YAML syntax.

What can be achieved with RKD?

• Simplify the scripts

• Put your Python and Bash scripts inside a YAML file (like in GNU Makefile)

• Do not reinvent the wheel (argument parsing, logs, error handling for example)

• Share the code across projects and organizations, use native Python Packaging to share tasks (like in Gradle)

• Natively integrate scripts with .env files

• Automatically generate documentation for your scripts

• Maintain your scripts in a good standard

RKD can be used on PRODUCTION, for development, for testing, to replace some of Bash scripts inside docker
containers, and for many more, where Makefile was used.

YAML

Simplified Python

Classic Python

version: org.riotkit.rkd/yaml/v1
tasks:

:hello1:
extends: rkd.core.standardlib.syntax.PythonSyntaxTask
arguments:

"--name":
required: True
help: "Allows to specify a name"

description: Prints your name
execute: |

self.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking from YAML,␣
→˓and you?')

return True

from argparse import ArgumentParser
from rkd.core.api.contract import ExecutionContext
from rkd.core.api.decorators import extends
from rkd.core.api.syntax import ExtendedTaskDeclaration
from rkd.core.standardlib.syntax import PythonSyntaxTask

@extends(PythonSyntaxTask)
def hello_task():

"""
Prints your name
"""

def configure_argparse(task: PythonSyntaxTask, parser: ArgumentParser):
parser.add_argument('--name', required=True, help='Allows to specify a name')

(continues on next page)

CONTENTS: 1

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

def execute(task: PythonSyntaxTask, ctx: ExecutionContext):
task.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking in Python, and␣

→˓you?')
return True

return [configure_argparse, execute]

IMPORTS = [
ExtendedTaskDeclaration(hello_task, name=':hello2')

]

from argparse import ArgumentParser
from rkd.core.api.contract import TaskInterface, ExecutionContext
from rkd.core.api.syntax import TaskDeclaration

class HelloFromPythonTask(TaskInterface):
"""
Prints your name
"""

def get_name(self) -> str:
return ':hello3'

def get_group_name(self) -> str:
return ''

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--name', required=True, help='Allows to specify a name')

def execute(self, ctx: ExecutionContext) -> bool:
self.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking classic Python␣

→˓syntax, and you?')
return True

IMPORTS = [
TaskDeclaration(HelloFromPythonTask()),

]

2 CONTENTS:

CHAPTER

ONE

EXAMPLE USE CASES

• Docker based production environment with multiple configuration files, procedures (see: Harbor project)

• Database administrator workspace (importing dumps, creating new user accounts, plugging/unplugging
databases)

• Development environment (executing migrations, importing test database, splitting tests and running parallel)

• On CI (prepare project to run on eg. Jenkins or Gitlab CI) - RKD is reproducible on local computer which makes
inspection easier

• Application cluster management, deploying applications, adding users, setting permissons

• Automate things like certificate regeneration on production server, RKD can generate any application configs
using JINJA2

• Installers (RKD has built-in commands for replacing lines in files, modifying .env files, asking user questions
and validating answers)

3

https://github.com/riotkit-org/riotkit-harbor

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

4 Chapter 1. Example use cases

CHAPTER

TWO

INSTALL RKD

RiotKit-Do is delivered as a Python package that can be installed system-wide or in a virtual environment. The virtual
environment installation is similar in concept to the Gradle wrapper (gradlew)

download a wrapper that will automatically setup virtual environment and install RKD
do not forget to commit wrapper to the GIT repository
wget https://github.com/riotkit-org/riotkit-do/blob/master/src/core/rkd/core/misc/
→˓initial-structure/rkdw.py -O rkdw
chmod +x rkdw
./rkdw

5

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

6 Chapter 2. Install RKD

CHAPTER

THREE

GETTING STARTED IN FRESHLY CREATED STRUCTURE

The “Quick start” section ends up with a .rkd directory, a requirements.txt and ./rkdw

1. Call RKD using a wrapper in project directory ./rkdw

2. Each time you install anything from pip in your project - add it to requirements.txt (or use pipenv install),
additional RKD tasks can be installed from PIP

3. In .rkd/makefile.yaml add your tasks, pipelines and imports

7

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

8 Chapter 3. Getting started in freshly created structure

CHAPTER

FOUR

CREATE YOUR FIRST TASK WITH GETTING STARTED

9

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

10 Chapter 4. Create your first task with Getting started

CHAPTER

FIVE

CHECK HOW TO USE COMMANDLINE TO RUN TASKS IN RKD WITH
COMMANDLINE USAGE

11

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

12 Chapter 5. Check how to use commandline to run tasks in RKD with Commandline usage

CHAPTER

SIX

SEE HOW TO IMPORT EXISTING TASKS TO YOUR MAKEFILE WITH
IMPORTING TASKS PAGE

13

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

14 Chapter 6. See how to import existing tasks to your Makefile with Importing tasks page

CHAPTER

SEVEN

KEEP LEARNING

• YAML syntax is described also in Tasks development - more examples section

• Writing Python code in makefile.yaml requires to lookup Tasks API

• Learn how to import installed tasks via pip - Importing tasks

• You can also write tasks code in pure Python and redistribute those tasks via Python’s PIP - see Tasks development
- more examples

• With RKD you can create interactive installers - check the Creating installer wizards with RKD section

7.1 Getting started

RKD is project-focused, which means it is designed to provide an automation in scope of a project. That’s why we
call it a DevOps tool. Project is a GIT repository with a set of tasks to manage particular thing. The thing could be
a development project, web application, a production database server, TLS certifications issuing, cluster configuration
management, almost everything.

Scope of a project does not mean only GIT repository, first of all it means a runtime environment placed absolutely
inside your project directory. Python’s Virtual Environments are extensively used to provide a separated per-project
environment with specific versions compatible with the currently used project.

To simplify usage of a project there is a ./rkdw wrapper that transparently creates a virtual environment and installs
RKD on-the-fly. It was inspired by the Gradle Project’s ./gradlew wrapper.

7.1.1 Where to place files

.rkd directory must always exists in your project. Inside .rkd directory you should place your makefile.yaml that will
contain all of the required tasks.

Just like in UNIX/Linux, and just like in Python - there is an environment variable RKD_PATH that allows to define
multiple paths to .rkd directories placed in other places - for example outside of your project. This gives a flexibility
and possibility to build system-wide tools installable via Python’s PIP.

15

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.1.2 Tutorial

Install RKD inside a project workspace

wget https://github.com/riotkit-org/riotkit-do/blob/master/src/core/rkd/core/misc/
→˓initial-structure/rkdw.py -O rkdw && chmod +x rkdw
./rkdw

As you learned already - automation files should be placed inside .rkd directory in your project, let’s create that
directory and create an example Makefile.

mkdir -p .rkd
nano .rkd/makefile.yaml

Now put example content into your makefile.yaml

version: org.riotkit.rkd/yaml/v1
environment:

PYTHONPATH: "/project"
tasks:

:hello:
description: Prints variables
environment:

SOME_VAR: "HELLO"
steps: |

echo "SOME_VAR is ${SOME_VAR}, PYTHONPATH is ${PYTHONPATH}"

Save the file and run.

./rkdw :tasks # see if your task is there

./rkdw :hello # execute your task

or combined :-)
./rkdw :tasks :hello

or do it multiple times!
./rkdw :hello :hello :hello

That’s it, now you are ready to proceed with the documentation to start writing your dreamed automation.

7.1.3 Environment variables

RKD natively reads .env (called also “dot-env files”) at startup. You can define default environment values in .env, or
in other .env-some-name files that can be included in env_files section of the YAML.

Scope of environment variables

env_files and environment blocks can be defined globally, which will end in including that fact in each task, second
possibility is to define those blocks per task. Having both global and per-task block merges those values together and
makes per-task more important.

Example

version: org.riotkit.rkd/yaml/v1
environment:

(continues on next page)

16 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

PYTHONPATH: "/project"
tasks:

:hello:
description: Prints variables
environment:

SOME_VAR: "HELLO"
steps: |

echo "SOME_VAR is ${SOME_VAR}, PYTHONPATH is ${PYTHONPATH}"

7.1.4 Arguments parsing

Arguments parsing is a strong side of RKD. Each task has it’s own argument parsing, it’s own generated –help command.
Python’s argparse library is used, so Python programmers should feel like in home.

Example

version: org.riotkit.rkd/yaml/v1
environment:

PYTHONPATH: "/project"
tasks:

:hello:
description: Prints your name
arguments:

"--name":
required: true
#option: store_true # for booleans/flags
#default: "Unknown" # for default values

steps: |
echo "Hello ${ARG_NAME}"

rkd :hello --name Peter

7.1.5 Defining tasks in Python code

Defining tasks in Python gives wider possibilities - to access Python’s libraries, better handle errors, write less tricky
code. RKD has a similar concept to hashbangs in UNIX/Linux.

There are two supported hashbangs + no hashbang:

• #!python

• #!bash

• (just none there)

What can I do in such Python code? Everything! Import, print messages, execute shell commands, everything.

Example

version: org.riotkit.rkd/yaml/v1
environment:

PYTHONPATH: "/project"
tasks:

(continues on next page)

7.1. Getting started 17

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

:hello:
description: Prints your name
arguments:

"--name":
required: true
#option: store_true # for booleans/flags
#default: "Unknown" # for default values

steps: |
#!python
print('Hello %s' % ctx.get_arg('--name'))

Special variables

• this - instance of current TaskInterface implementation

• ctx - instance of ExecutionContext

Please check Tasks API for those classes reference.

7.1.6 YAML syntax reference

Let’s at the beginning start from analyzing an example.

version: org.riotkit.rkd/yaml/v1

optional: Import tasks from Python packages
This gives a possibility to publish tasks and share across projects, teams,␣
→˓organizations
imports:

- rkt_utils.db.WaitForDatabaseTask

optional environment section would append those variables to all tasks
of course the tasks can overwrite those values in per-task syntax
environment:

PYTHONPATH: "/project/src"

optional env files loaded there would append loaded variables to all tasks
of course the tasks can overwrite those values in per-task syntax
#env_files:
- .some-dotenv-file

tasks:
:check-is-using-linux:

extends: rkd.core.standardlib.syntax.MultiStepLanguageAgnosticTask # this a␣
→˓default value

description: Are you using Linux?
use sudo to become a other user, optional
become: root
steps:

steps can be defined as single step, or multiple steps
each step can be in a different language
each step can be a multiline string
- "[[$(uname -s) == \"Linux\"]] && echo \"You are using Linux, cool\""

(continues on next page)

18 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

- echo "step 2"
- |

#!python
print('Step 3')

:hello:
description: Say hello
arguments:

"--name":
help: "Your name"
required: true
#default: "Peter"
#option: "store_true" # for booleans

steps: |
echo "Hello ${ARG_NAME}"

if [[$(uname -s) == "Linux"]]; then
echo "You are a Linux user"

fi

extends - Base Task that is going to be extended. Default value is rkd.core.standardlib.syntax.
MultiStepLanguageAgnosticTask which allows to execute multiple steps in different languages

imports - Imports external tasks installed via Python’ PIP. That’s the way to easily share code across projects

environment - Can define default values for environment variables. Environment section can be defined for all tasks,
or per task

env_files - Includes .env files, can be used also per task

tasks - List of available tasks, each task has a name, descripton, list of steps (or a single step), arguments

Running the example:

1. Create a .rkd directory

2. Create .rkd/makefile.yaml file

3. Paste/rewrite the example into the .rkd/makefile.yaml

4. Run rkd :tasks from the directory where the .rkd directory is placed

5. Run defined tasks rkd :hello :check-is-using-linux

Example projects using Makefile YAML syntax:

• Taiga docker image

• Taiga Events docker image

• K8S Workspace

Check ADVANCED usage page for description of all environment variables, mechanisms, good practices and more

7.1. Getting started 19

https://github.com/riotkit-org/docker-taiga/blob/master/.rkd/makefile.yaml
https://github.com/riotkit-org/docker-taiga-events/blob/master/.rkd/makefile.yaml
https://github.com/riotkit-org/riotkit-do-example-kubernetes-workspace/blob/master/.rkd/makefile.yaml

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.2 Commandline usage

RKD command-line usage is highly inspired by GNU Make and Gradle, but it has its own extended possibilities to
make your scripts smaller and more readable.

• Tasks are prefixed always with “:”.

• Each task can handle it’s own arguments (unique in RKD)

• “@” allows to propagate arguments to next tasks (unique in RKD)

7.2.1 Tasks arguments usage in shell and in scripts

Executing multiple tasks in one command:

./rkdw :task1 :task2

Multiple tasks with different switches:

./rkdw :task1 --hello :task2 --world --become=root

Second task will run as root user, additionally with --world parameter.

Tasks sharing the same switches

Both tasks will receive switch “–hello”

expands to:
:task1 --hello
:task2 --hello
./rkdw @ --hello :task1 :task2

handy, huh?

Advanced usage of shared switches

Operator “@” can set switches anytime, it can also clear or replace switches in NEXT TASKS.

expands to:
:task1 --hello
:task2 --hello
:task3
:task4 --world
:task5 --world
./rkdw @ --hello :task1 :task2 @ :task3 @ --world :task4 :task5

Written as a pipeline (regular bash syntax)

It’s exactly the same example as above, but written multiline. It’s recommended to write multiline commands if they
are longer.

./rkdw @ --hello \
:task1 \
:task2 \
@
:task3 \

(continues on next page)

20 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

@ --world \
:task4 \
:task5

Arguments

Each task has it’s own arguments parsing and –help method

see a list of commandline switches
./rkdw :task1 --help

increase log level
./rkdw :task1 --log-level debug

log output to file
./rkdw :task1 --log-to-file=/tmp/task1.log

change user for task execution time
./rkdw :task1 --become=root

Global commandline switches

To apply default, global error level use a switch before all tasks.

./rkdw --log-level=debug :task1 :task2

alternatively (changes log level on earlier stage than argument parsing)
RKD_SYS_LOG_LEVEL=debug ./rkdw :task1 :task2

or like shown in 'Tasks arguments usage in shell and in scripts' - any commandline␣
→˓switches
can be propagated, including RKD internal switches
./rkdw @ --log-level=debug --task-workdir=/tmp :task1 :task2

7.2.2 Advanced: Blocks for error handling

Blocks allow to retry single failed task, or a group of tasks, execute a failure or rescue task.

Tip: Blocks cannot be nested.

Retry a task - @retry

Retry task until it will return success, up to defined retries. If there are multiple tasks, then a single task is repeated,
not a whole block.

./rkdw '{@retry 3}' :unstable-task '{/@}'

Retry a block (set of tasks) - @retry-block

Works very similar to @retry, but in case, when at least one task fails - all tasks in the block are repeated.

7.2. Commandline usage 21

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

./rkdw '{@retry-block 3}' :unstable-task :task2 '{/@}'

Rescue - @rescue

When a failure happens in any of tasks, then those tasks are interrupted and a rollback task is executed. Whole block
status depends on the rollback task status. After a successful rollback execution next tasks from outside of the blocks
are normally executed.

./rkdw :db:shutdown :db:backup '{@rescue :db:restore}' :db:upgrade '{/@}' :db:start

Error - @error

When at least one task fails, then a error task is notified and the execution is stopped.

./rkdw '{@error :notify "Task failed!"}' :some-task :some-other-task '{/@}'

7.3 Syntax

RKD is elastic. Different syntax allows to choose between ease of usage and extended possibilities.

7.3.1 YAML

• Best choice to start with RKD, perfect for simpler usage

• Gives clear view on what is defined, has obvious structure

• Created tasks are not possible to be shared as part of Python package

version: org.riotkit.rkd/yaml/v1
tasks:

:hello1:
extends: rkd.core.standardlib.syntax.PythonSyntaxTask
arguments:

"--name":
required: True
help: "Allows to specify a name"

description: Prints your name
execute: |

self.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking from YAML,␣
→˓and you?')

return True

7.3.2 Simplified Python

• Practical replacement for YAML syntax, good choice for more advanced tasks

• Has more flexibility on the structure, tasks and other code can be placed in different files and packages

• Created tasks are not possible to be shared as part of Python package, or at least difficult and should not be

22 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

from argparse import ArgumentParser
from rkd.core.api.contract import ExecutionContext
from rkd.core.api.decorators import extends
from rkd.core.api.syntax import ExtendedTaskDeclaration
from rkd.core.standardlib.syntax import PythonSyntaxTask

@extends(PythonSyntaxTask)
def hello_task():

"""
Prints your name
"""

def configure_argparse(task: PythonSyntaxTask, parser: ArgumentParser):
parser.add_argument('--name', required=True, help='Allows to specify a name')

def execute(task: PythonSyntaxTask, ctx: ExecutionContext):
task.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking in Python, and␣

→˓you?')
return True

return [configure_argparse, execute]

IMPORTS = [
ExtendedTaskDeclaration(hello_task, name=':hello2')

]

7.3.3 Classic Python

• Provides a full control without any limits on tasks extending

• Has more flexibility on the structure, tasks and other code can be placed in different files and packages

• Best fits for creating shareable tasks using local and remote Python packages

from argparse import ArgumentParser
from rkd.core.api.contract import TaskInterface, ExecutionContext
from rkd.core.api.syntax import TaskDeclaration

class HelloFromPythonTask(TaskInterface):
"""
Prints your name
"""

def get_name(self) -> str:
return ':hello3'

def get_group_name(self) -> str:
return ''

(continues on next page)

7.3. Syntax 23

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--name', required=True, help='Allows to specify a name')

def execute(self, ctx: ExecutionContext) -> bool:
self.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking classic Python␣

→˓syntax, and you?')
return True

IMPORTS = [
TaskDeclaration(HelloFromPythonTask()),

]

7.3.4 Syntax reference

Simplified Python Python Class YAML Description
get_steps(task: MultiStepLan-
guageAgnosticTask) -> List[str]:

get_steps steps: [“”] List of steps in any language (only if
extending MultiStep LanguageAg-
nosticTask)

stdin() N/A input: “” Standard input text
@extends(ClassName) decora-
tor on a main method

Class-
Name(BaseClass)

extends: pack-
age.name.ClassName

Which Base Task should be ex-
tended

execute(task: BaseClass-
NameTask, ctx: ExecutionCon-
text):

execute(self, ctx: Exe-
cutionContext)

execute: “” Python code to execute

inner_execute(task: BaseClass-
NameTask, ctx: ExecutionCon-
text):

inner_execute(self,
ctx: ExecutionCon-
text)

inner_execute:
“”

Python code to execute inside in-
ner_execute (if implemented by
Base Task)

compile(task: BaseClass-
NameTask, event: Compilation-
LifecycleEvent):

compile(self, event:
CompilationLifecy-
cleEvent):

N/A Python code to execute during Con-
text compilation process

configure(task: BaseClass-
NameTask, event: Configura-
tionLifecycleEvent):

configure(self, event:
ConfigurationLifecy-
cleEvent):

configure: “” Python code to execute during Task
configuration process

get_description() get_description(self) description: “” Task description
get_group_name() get_group_name() N/A Group name
internal=True in TaskDeclara-
tion

internal=True in
TaskDeclaration

internal: False Is task considered internal? (hidden
on :tasks list)

become in TaskDeclaration (or
commandline switch)

become in TaskDecla-
ration (or command-
line switch)

become: root Change user for task execution time

workdir in TaskDeclaration workdir in TaskDecla-
ration

workdir:
/some/path

Change working directory for task
execution time

configure_argparse(task: Base-
ClassNameTask, parser: Argu-
mentParser)

config-
ure_argparse(self,
parser: Argument-
Parser)

arguments: {} Configure arg-
parse.ArgumentParser object

24 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.4 Importing tasks

Tasks can be defined as installable Python’s packages that you can import in your Makefile

Please note:

• To import a group of packages, the package you try to import need to have a defined imports() method inside of
the package.

• The imported group does not need to import automatically dependent tasks (but it can, it is recommended), you
need to read into the docs of specific package if it does so

7.4.1 1) Install a package

RKD defines dependencies using Python standards.

Example: Given we want to import tasks from package “rkt_armutils”.

Using virtualenv
echo "rkt_armutils==3.0" >> requirements.txt
pip install -r requirements.txt

Alternatively, using pipenv (recommended)
pipenv install rkt_armutils==3.0

Good practices:

• Use fixed versions eg. 3.0 or even 3.0.0 and upgrade only intentionally to reduce your work. Automatic updates,
especially of major versions could be unpredictable and introduce breaking changes into your project

How do I check latest version?:

• Simply install a package eg. pip install rkt_armutils, then do a pip show rkt_armutils and write
the version

to the requirements.txt, or lookup a package first at https://pypi.org/project/rkt_armutils/ (where rkt_armutils is an
example package)

7.4.2 2) In YAML syntax

Example: Given we want to import task “InjectQEMUBinaryIntoContainerTask”, or we want to import whole
“rkt_armutils.docker” group

imports:
Import whole package, if the package defines a group import (method imports())
- rkt_armutils.docker

Or import single task
- rkt_armutils.docker.InjectQEMUBinaryIntoContainerTask

7.4. Importing tasks 25

https://pypi.org/project/rkt_armutils/

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.4.3 2) In Python syntax

Example: Given we want to import task “InjectQEMUBinaryIntoContainerTask”, or we want to import whole
“rkt_armutils.docker” group

from rkd.core.api.syntax import TaskDeclaration
from rkt_armutils.docker import InjectQEMUBinaryIntoContainerTask

... (use "+" operator to append, remove "+" if you didn't define any import yet)
IMPORTS += [TaskDeclaration(InjectQEMUBinaryIntoContainerTask)]

7.4.4 3) Inline syntax

Tasks could be imported also in shell, for quick check, handy scripts, or for embedding inside other applications.

note: Those examples requires "rkt_utils" package from PyPI
RKD_IMPORTS="rkt_utils.docker" rkd :docker:tag
RKD_IMPORTS="rkt_utils.docker:rkt_ciutils.boatci:rkd_python" rkd :tasks

via commandline switch "--imports"
rkd --imports "rkt_utils.docker:rkt_ciutils.boatci:rkd_python" :tasks

Note: The significant difference between environment variable and commandline switch is that the environment variable
will be inherited into subshells of RKD, commandline argument not.

For more information about this environment variable - check it’s documentation page: RKD_IMPORTS

7.4.5 Ready to go? Check Built-in tasks that you can import in your Makefile

7.5 Extending tasks

7.5.1 Introduction

RKD is designed to provide ready-to-configure automations. In practice you can install almost ready set of tasks using
Python’s PIP tool, then adjust those tasks to your needs.

Every Base Task implements some mechanism, in this chapter we will use Docker Container as an example.

Given you have a Base Task RunInContainerBaseTask, it lets you do something, while a␣
→˓container is running.
You can execute commands in container, copy files between host and the container.

According to the RunInContainerBaseTask's documentation you need to extend the it.
Which means to make your own task that extends RunInContainerBaseTask as a base,
then override a method, put your code.

Voilà! Your own task basing on RunInContainerBaseTask is now ready to be executed!

26 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.5.2 Practical tips

In order to successfully extend a Base Task a few steps needs to be marked. Check Base Task documentation, especially
for:

• The list of methods that are recommended to be extended

• Which methods could be used in configure() and which in execute()

• Does the Base Task implement inner_execute()

• Note which methods to override needs to keep parent call, and if the parent should be called before or after the
child (method that overrides parent)

Caution: inner_execute() will not work if it was not implemented by parent task. The sense of existence of
inner_execute() is that it should be executed inside execute() at best moment of Base Task.

Hint: To avoid compatibility issues when upgrading Base Task version use only documented methods

7.5.3 Decorators

There are three decorators that allows to decide if the parent method will be executed:

• @after_parent (from rkd.core.api.decorators): Execute our method after original method

• @before_parent (from rkd.core.api.decorators): Execute our method before original method

• @without_parent (from rkd.core.api.decorators): Do not execute parent method at all

Important: No decorator in most case means that the parent method will not be executed at all

Caution: Not all methods supports decorators. For example argument parsing always inherits argument parsing
from parent. Decorators can be used for configure, compile, execute, inner_execute.

Warning: Using multiple decorators for single method is not allowed and leads to syntax validation error.

YAML

Simplified Python

Classic Python

execute@after_parent: |
print('I will e executed after parent method will be')

@before_parent
def execute(task: PythonSyntaxTask, ctx: ExecutionContext):

print('I will e executed before parent method will be')

7.5. Extending tasks 27

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

def execute(self, ctx: ExecutionContext):
print('BEFORE PARENT')
super().execute(ctx) # make a parent method call
print('AFTER PARENT')

7.5.4 Example #1: Using inner_execute

Check RunInContainerBaseTask documentation first. It says that execute() should not be overridden, but in-
ner_execute() should be used instead.

Allows to work inside of a temporary docker container.

Configuration:

• mount(): Mount directories/files as volumes

• add_file_to_copy(): Copy given files to container before container starts

• user: Container username, defaults to “root”

• shell: Shell binary path, defaults to “/bin/sh”

• docker_image: Full docker image name with registry (optional), group, image name and tag

• entrypoint: Entrypoint

• command: Command to execute on entrypoint

Runtime:

• copy_to_container(): Copy files/directory to container immediately

• in_container(): Execute inside container

Example:

version: org.riotkit.rkd/yaml/v1
imports:

- rkd.core.standardlib.docker.RunInContainerBaseTask

tasks:
:something-in-docker:

extends: rkd.core.standardlib.docker.RunInContainerBaseTask
configure: |

self.docker_image = 'php:7.3'
self.user = 'www-data'
self.mount(local='./build', remote='/build')
self.add_file_to_copy('build.php', '/build/build.php')

inner_execute: |
self.in_container('php build.php')
return True

do not extend just "execute", because "execute" is used by␣
→˓RunInContainerBaseTask

to spawn docker container, run inner_execute(), and after␣
→˓just destroy the container

28 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.5.5 Example #2: Advanced - extending a task that extends other task

In Example #1 there is a base task that runs something inside a docker container, going further in Example #2 there is
a task that runs any code in a PHP container.

Architecture:

• Our example creates a Task from PhpScriptTask (we extend it, and create a “runnable” Task from it)

• rkd.php.script.PhpScriptTask extends rkd.core.standardlib.docker.RunInContainerBaseTask

Again, to properly prepare your task basing on existing Base Task check the Base Task documentation for tips. In
case of PhpScriptTask the documentation says the parent inner_execute method should be executed to still allow
providing PHP code via stdin. To coexist parent and new method in place of inner_execute just use one of decorators
to control the inheritance behavior.

Complete example:

Execute a PHP code (using a docker container) Can be extended - this is a base task.

Inherits settings from RunInContainerBaseTask.

Configuration:

• script: Path to script to load instead of stdin (could be a relative path)

• version: PHP version. Leave None to use default 8.0-alpine version

Example of usage:

version: org.riotkit.rkd/yaml/v2
imports:

- rkd.php.script.PhpScriptTask
tasks:

:yaml:test:php:
extends: rkd.php.script.PhpScriptTask
configure@before_parent: |

self.version = '7.2-alpine'
inner_execute@after_parent: |

self.in_container('php --version')
print('IM AFTER PARENT. At first the PHP code from "input"␣

→˓will be executed.')
return True

input: |
var_dump(getcwd());
var_dump(phpversion());

Example of usage with MultiStepLanguageAgnosticTask:

version: org.riotkit.rkd/yaml/v1
tasks:

:exec:
environment:

PHP: '7.4'
IMAGE: 'php'

steps: |
#!rkd.php.script.PhpLanguage
phpinfo();

7.5. Extending tasks 29

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Syntax reference

Simplified Python Python Class YAML Description
get_steps(task: MultiStepLan-
guageAgnosticTask) -> List[str]:

get_steps steps: [“”] List of steps in any language (only if
extending MultiStep LanguageAg-
nosticTask)

stdin() N/A input: “” Standard input text
@extends(ClassName) decora-
tor on a main method

Class-
Name(BaseClass)

extends: pack-
age.name.ClassName

Which Base Task should be ex-
tended

execute(task: BaseClass-
NameTask, ctx: ExecutionCon-
text):

execute(self, ctx: Exe-
cutionContext)

execute: “” Python code to execute

inner_execute(task: BaseClass-
NameTask, ctx: ExecutionCon-
text):

inner_execute(self,
ctx: ExecutionCon-
text)

inner_execute:
“”

Python code to execute inside in-
ner_execute (if implemented by
Base Task)

compile(task: BaseClass-
NameTask, event: Compilation-
LifecycleEvent):

compile(self, event:
CompilationLifecy-
cleEvent):

N/A Python code to execute during Con-
text compilation process

configure(task: BaseClass-
NameTask, event: Configura-
tionLifecycleEvent):

configure(self, event:
ConfigurationLifecy-
cleEvent):

configure: “” Python code to execute during Task
configuration process

get_description() get_description(self) description: “” Task description
get_group_name() get_group_name() N/A Group name
internal=True in TaskDeclara-
tion

internal=True in
TaskDeclaration

internal: False Is task considered internal? (hidden
on :tasks list)

become in TaskDeclaration (or
commandline switch)

become in TaskDecla-
ration (or command-
line switch)

become: root Change user for task execution time

workdir in TaskDeclaration workdir in TaskDecla-
ration

workdir:
/some/path

Change working directory for task
execution time

configure_argparse(task: Base-
ClassNameTask, parser: Argu-
mentParser)

config-
ure_argparse(self,
parser: Argument-
Parser)

arguments: {} Configure arg-
parse.ArgumentParser object

7.6 Pipelines

Pipeline is a set of Tasks executing in selected order, with optional addition of error handling. Modifiers
are changing behavior of Task execution, by implementing fallbacks, retries and error notifications.

Tip: Modifiers can be used together e.g. @retry + @rescue, @retry + @error

30 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.6.1 Basic pipeline

Basically the pipeline is a set of Tasks, it does not need to define any error handling.

Tip: Treat Pipeline as a shell command invocation - in practice a Pipeline is an alias, it is similar to a command
executed in command line but a little bit more advanced.

The comparison isn’t abstract, that’s how Pipelines works and why there are shell examples of Pipelines.

YAML

Python

Shell

version: org.riotkit.rkd/yaml/v2

...

pipelines:
:perform:

tasks:
- task: :start
- task: :do-something
- task: :stop

from rkd.core.api.syntax import Pipeline, PipelineTask as Task, PipelineBlock as Block,␣
→˓TaskDeclaration

...

PIPELINES = [
Pipeline(

name=':perform',
description='Example',
to_execute=[

Task(':start'),
Task(':do-something'),
Task(':stop')

]
)

]

:perform
./rkdw :start :do-something :stop

7.6. Pipelines 31

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.6.2 @retry

Simplest modifier that retries each failed task in a block up to maximum of N times.

The example actually combines @retry + @rescue. But @retry can be used alone.

Warning: When retrying a Pipeline inside of a Pipeline, then all that child Pipeline Tasks will be repeated, it will
work like a @retry-block for inherited Pipeline.

Syntax:

YAML

Python

Shell

version: org.riotkit.rkd/yaml/v2

...

pipelines:
:start:

tasks:
- block:

retry: 1 # retry max. 1 time
rescue: [':app:clear-cache', ':app:start']
tasks:

- task: [':db:start']
- task: [':app:start']

- task: [':logs:collect', '--app', '--db', '--watch']

from rkd.core.api.syntax import Pipeline, PipelineTask as Task, PipelineBlock as Block,␣
→˓TaskDeclaration

...

PIPELINES = [
Pipeline(

name=':start',
description='Example',
to_execute=[

Block(rescue=':app:clear-cache :app:start', retry=1, tasks=[
Task(':db:start'),
Task(':app:start')

]),
Task(':logs:collect', '--app', '--db', '--watch')

]
)

]

:start
./rkdw '{@rescue :app:clear-cache :app:start @retry 1}' :db:start :app:start '{/@}'␣
→˓:logs:collect --app --db --watch

32 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Example workflow:

7.6.3 @retry-block

Works in similar way as @retry, the difference is that if at least one task fails in a block, then all tasks from that blocks
are repeated N times.

Example workflow:

7.6. Pipelines 33

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.6.4 @error

Executes a Task or set of Tasks when error happens. Does not affect the final result. After error task is finished the
whole execution is stopped, no any more task will execute.

Syntax:

YAML

Python

Shell

version: org.riotkit.rkd/yaml/v2

...

pipelines:
:upgrade:

tasks:
- task: ":db:backup"
- task: ":db:stop"
- block:

error: [':notify', '--msg="Failed"']
tasks:

- task: [':db:migrate']
- task: [":db:start"]
- task: [":notify", '--msg', 'Finished']

from rkd.core.api.syntax import Pipeline, PipelineTask as Task, PipelineBlock as Block,␣
→˓TaskDeclaration
from rkd.core.standardlib.core import DummyTask
from rkd.core.standardlib.shell import ShellCommandTask

...

PIPELINES = [
Pipeline(

name=':upgrade',
description='Example',
to_execute=[

Task(':db:backup'),
Task(':db:stop'),
Block(error=':notify --msg="Failed"', tasks=[

Task(':db:migrate')
]),
Task(':db:start'),
Task(':notify', '--msg', 'Finished')

]
)

]

:upgrade
./rkdw :db:backup :db:stop '{@error :notify --msg="Failed"}' :db:migrate '{/@}'␣
→˓:db:start :notify --msg "Finished"

34 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Example workflow:

7.6.5 @rescue

Defines a Task that should be ran, when any of Task from given block will fail. Works similar as @error, but with
difference that @rescue changes the result of pipeline execution.

Tip: When @rescue succeeds, then we assume that original Task that failed is now ok.

Warning: When rescuing a whole Pipeline inside other Pipeline, then failing Task will be rescued and the rest of
Tasks from child Pipeline will be skipped.

Example workflow:

7.6. Pipelines 35

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.6.6 Order of modifiers execution

1. @retry: Each task is repeated until success or repeat limit

2. @retry-block: Whole block is repeated until success or repeat limit

3. @rescue: A rescue attempt of given Task or inherited Pipeline is attempted

4. @error: An error notification is sent, when all previous steps failed

7.6.7 Pipeline in Pipeline

A Pipeline inside a Pipeline is when we have defined a Pipeline, and one of it’s called Tasks is other Pipeline.

version: org.riotkit.rkd/yaml/v2

...

pipelines:
:prepare_disk_space:

tasks:
- task: ":db:clear_buffers"
- task: ":db:clear_temporary_directory"

:upgrade:
tasks:

- task: ":db:backup"
- task: ":db:stop"
- task: ":prepare_disk_space" # HERE IS OUR INHERITED PIPELINE
- block:

error: [':notify', '--msg="Failed"']
tasks:

- task: [':db:migrate']
- task: [":db:start"]
- task: [":notify", '--msg', 'Finished']

7.6.8 Pipeline in Pipeline - how modifiers behave

Having Pipeline called inside other Pipeline, the inherited one is treated similar to a Task.

:pipeline_1 (@retry, @error, @rescue)
:task_1
:pipeline_2 (@retry, @rescue, ...)

:subtask_1
:subtask_2

:task_3

When :pipeline_2 fails then at first - :pipeline_2 modifiers are called. In case, when :pipeline_2 modifiers didn’t
rescue the Pipeline, then modifiers from parent level :pipeline_1 are called.

Warning: When modifiers on main level of Pipeline fails, then parent Pipeline modifiers are inherited that behaves
differently.

36 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

1. @retry from parent becomes a @retry-block of whole Pipeline (we retry a Pipeline now)

2. @rescue after rescuing a Task inside child Pipeline is skipping remaining Tasks in child Pipeline

7.6.9 Python syntax reference (API)

class rkd.core.api.syntax.Pipeline(name: str, to_execute: List[Union[str,
rkd.core.api.contract.PipelinePartInterface]], env: Optional[Dict[str,
str]] = None, description: str = '')

Task Caller

Has a name like a Task, but itself does not do anything than calling other tasks in selected order

class rkd.core.api.syntax.PipelineTask(task: str, *task_args)
Represents a single task in a Pipeline

from rkd.core.api.syntax import Pipeline

PIPELINES = [
Pipeline(

name=':build',
to_execute=[

Task(':server:build --with-bluetooth'),
Task(':client:build', '--with-bluetooth')

]
)

]

class rkd.core.api.syntax.PipelineBlock(tasks: List[rkd.core.api.syntax.PipelineTask], retry:
Optional[int] = None, retry_block: Optional[int] = None, error:
Optional[str] = None, rescue: Optional[str] = None)

Represents block of tasks

Example of generated block: {@retry 3} :some-task {/@}

from rkd.core.api.syntax import Pipeline, PipelineTask as Task, PipelineBlock as␣
→˓Block, TaskDeclaration

Pipeline(
name=':error-handling-example',
description=':notify should be invoked after "doing exit" task, and execution␣

→˓of a BLOCK should be interrupted',
to_execute=[

Task(':server:build'),
Block(error=':notify -c "echo 'Build failed'"', retry=3, tasks=[

Task(':docs:build', '--test'),
Task(':sh', '-c', 'echo "doing exit"; exit 1'),
Task(':client:build')

]),
Task(':server:clear')

]
)

7.6. Pipelines 37

mailto:\protect \T1\textbraceleft @retry

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.7 Project structure

Root level of the project should contain a hidden directory .rkd, there could be also defined subprojects as subdirec-
tories of any depth.

Example structure

project-level RKD files
.rkd/makefile.yaml
.rkd/makefile.py
rkdw

some domain-specific files (e.g. web application)
src/Application/index.php
composer.json
composer.lock

example subproject - documentation
docs/index.rst
docs/.rkd/makefile.yaml

example second subproject - deployment to production
infrastructure/main.tf
infrastructure/variables.tf
infrastructure/outputs.tf
infrastructure/.rkd/makefile.py

Example of usage of above project

build project, docs
./rkdw :docs:build :build
./rkdw :infrastructure:deploy

Tip: Divide Tasks in subprojects into smaller pieces to create an aggregated flow on project level, or on parent
subproject level.

Tip: Design subprojects to be independent of Tasks in other subprojects to gain an easy way of testing smaller pieces
of your automation.

7.7.1 Enabling subprojects

Subproject can be enabled only manually, there is no automatic discovery for performance and clarity reasons. A
subproject can be included by it’s parent Makefile. There can be an infinite depth of subprojects.

All tasks from subprojects are prefixed with the directory name (a subproject name).

makefile.yaml

makefile.py

38 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

subprojects: ['docs', 'infrastructure']

SUBPROJECTS = ['docs', 'infrastructure']

Warning: Subproject name should not contain “/” or any other special characters

Warning: Subprojects are loaded recursively step-by-step. Subproject cannot load sub-sub-subproject, it must go
through step-by-step and include its closest children.

7.8 Built-in tasks

7.8.1 Shell

Provides tasks for shell commands execution - mostly used in YAML syntax and in Python modules.

:sh

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.shellrkd.core.standardlib.shell.ShellCommandTaskpip install rkd== SE-
LECT VERSION

Executes a Bash script. Can be multi-line. Script can read from stdin instead of -c switch, if configured with
is_cmd_required = True during configuration stage.

Hint: Phrase %RKD% is replaced with an rkd binary name

Hint: This is an extendable task. Read more in Extending tasks chapter.

Example of plain usage:

rkd :sh -c "ps aux"

Example of task alias usage:

from rkd.core.api.syntax import TaskAliasDeclaration as Task

#
Example of Makefile-like syntax
#

IMPORTS = []
(continues on next page)

7.8. Built-in tasks 39

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

TASKS = [
Task(':find-images', [

':sh', '-c', 'find ../../ -name \'*.png\''
]),

Task(':build', [':sh', '-c', ''' set -x;
cd ../../../

chmod +x setup.py
./setup.py build

ls -la
''']),

https://github.com/riotkit-org/riotkit-do/issues/43
Task(':hello', [':sh', '-c', 'echo "Hello world"']),
Task(':alias-in-alias-test', [':hello'])

]

:exec

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.shellrkd.core.standardlib.shell.ExecProcessCommandpip install rkd== SE-
LECT VERSION

Works identically as :sh, but for spawns a single process. Does not allow a multi-line script syntax.

BaseShellCommandWithArgumentParsingTask

Warning: To be used only in Python syntax

Creates a command that executes bash script and provides argument parsing using Python’s argparse. Parsed arguments
are registered as ARG_{{argument_name}} eg. –activity-type would be exported as ARG_ACTIVITY_TYPE.

IMPORTS += [
BaseShellCommandWithArgumentParsingTask(

name=":protest",
group=":activism",
description="Take action!",
arguments_definition=lambda argparse: (

argparse.add_argument('--activity-type', '-t', help='Select an activity type
→˓')

),
command='''

echo "Let's act! Let's ${ARG_ACTIVITY_TYPE}!"
(continues on next page)

40 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

'''
)

]

MultiStepLanguageAgnosticTask

Used by default in YAML syntax (if “extends” is not specified). Allows to execute multiple steps in various languages.

It has very similar behavior to the GNU Makefile - each step is ran in a separate shell.

class rkd.core.standardlib.syntax.MultiStepLanguageAgnosticTask
Allows to define multiple shell/other language steps In YAML syntax it is a default task type (notice: there is no
need to specify extends attribute)

Bash example

version: org.riotkit.rkd/yaml/v2
tasks:

:example:
steps: |

echo "Hello from the Bash"

Python example

version: org.riotkit.rkd/yaml/v2
tasks:

:example:
steps: |

#!python
print('Hello')

Multiple languages and steps example

version: org.riotkit.rkd/yaml/v2
tasks:

:example:
steps:

- |
#!python
print('Hello from Python')

- ps aux
- echo "Hello from Bash"

Non-standard languages support

version: org.riotkit.rkd/yaml/v2
imports:

- rkd.php.script.PhpLanguage
environment:

PHP: '8.0'
IMAGE: 'php'

tasks:
:example:

(continues on next page)

7.8. Built-in tasks 41

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

steps:
- |

#!rkd.php.script.PhpLanguage
phpinfo();

- |
#!rkd.core.standardlib.jinja.Jinja2Language
The used shell is {{ SHELL }}

7.8.2 Technical/Core

:tasks

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib rkd.core.standardlib.TasksListingTaskpip install rkd== SE-
LECT VERSION

Lists all tasks that are loaded by all chained makefile.py configurations.

Environment variables:

• RKD_WHITELIST_GROUPS: (Optional) Comma separated list of groups to only show on the list

• RKD_ALIAS_GROUPS: (Optional) Comma separated list of groups aliases eg. “:international-workers-
association->:iwa,:anarchist-federation->:fa”

:version

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib rkd.core.standardlib.VersionTaskpip install rkd== SE-
LECT VERSION

Shows version of RKD and lists versions of all loaded tasks, even those that are provided not by RiotKit. The version
strings are taken from Python modules as RKD strongly rely on Python Packaging.

CallableTask

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib rkd.core.standardlib.CallableTaskpip install rkd== SE-
LECT VERSION

This is actually not a task to use directly, it is a template of a task to implement yourself. It’s kind of a shortcut to create
a task by defining a simple method as a callback.

42 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

import os
from rkd.core.api.syntax import TaskDeclaration
from rkd.api.contract import ExecutionContext
from rkd.core.standardlib import CallableTask

def union_method(context: ExecutionContext) -> bool:
os.system('xdg-open https://iwa-ait.org')
return True

IMPORTS = [
TaskDeclaration(CallableTask(':create-union', union_method))

]

TASKS = []

class rkd.core.standardlib.CallableTask(name: str, callback:
Callable[[rkd.core.api.contract.ExecutionContext,
rkd.core.api.contract.TaskInterface], bool], args_callback:
Optional[Callable[[argparse.ArgumentParser], None]] = None,
description: str = '', group: str = '', become: str = '',
argparse_options:
Optional[List[rkd.core.api.contract.ArgparseArgument]] =
None)

Executes a custom callback - allows to quickly define a short, primitive task

configure_argparse(parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--php', help='PHP version ("php" docker image tag)',␣

→˓default='8.0-alpine')
parser.add_argument('--image', help='Docker image name', default='php')

execute(context: rkd.core.api.contract.ExecutionContext)→ bool
Executes a task. True/False should be returned as return

get_become_as()→ str
User name in UNIX/Linux system, optional. When defined, then current task will be executed as this user
(WARNING: a forked process would be started)

get_declared_envs()→ Dict[str, str]
Dictionary of allowed envs to override: KEY -> DEFAULT VALUE

All environment variables fetched from the ExecutionContext needs to be defined there. Declared values
there are automatically documented in –help

@classmethod
def get_declared_envs(cls) -> Dict[str, Union[str, ArgumentEnv]]:

return {
'PHP': ArgumentEnv('PHP', '--php', '8.0-alpine'),
'IMAGE': ArgumentEnv('IMAGE', '--image', 'php')

}

7.8. Built-in tasks 43

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

get_group_name()→ str
Group name where the task belongs eg. “:publishing”, can be empty.

get_name()→ str
Task name eg. “:sh”

:rkd:create-structure

Hint: This is an extendable task. Read more in Extending tasks chapter.

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib rkd.core.standardlib.CreateStructureTaskpip install rkd== SE-
LECT VERSION

Creates a template structure used by RKD in current directory.

API for developers:

This task is extensible by class inheritance, you can override methods to implement your own task with changed be-
havior. It was designed to allow to create customized installers for tools based on RKD (custom RKD distributions),
the example is RiotKit Harbor.

Look for “interface methods” in class code, those methods are guaranteed to not change from minor version to minor
version.

class rkd.core.standardlib.CreateStructureTask
Creates a RKD file structure in current directory

This task is designed to be extended, see methods marked as “interface methods”.

configure_argparse(parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--php', help='PHP version ("php" docker image tag)',␣

→˓default='8.0-alpine')
parser.add_argument('--image', help='Docker image name', default='php')

execute(ctx: rkd.core.api.contract.ExecutionContext)→ bool
Executes a task. True/False should be returned as return

get_group_name()→ str
Group name where the task belongs eg. “:publishing”, can be empty.

get_name()→ str
Task name eg. “:sh”

get_patterns_to_add_to_gitignore(ctx: rkd.core.api.contract.ExecutionContext)→ list
List of patterns to write to .gitignore

Interface method: to be overridden

on_creating_venv(ctx: rkd.core.api.contract.ExecutionContext)→ None
When creating virtual environment

Interface method: to be overridden

44 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

on_files_copy(ctx: rkd.core.api.contract.ExecutionContext)→ None
When files are copied

Interface method: to be overridden

on_git_add(ctx: rkd.core.api.contract.ExecutionContext)→ None
Action on, when adding files via git add

Interface method: to be overridden

on_requirements_txt_write(ctx: rkd.core.api.contract.ExecutionContext)→ None
After requirements.txt file is written

Interface method: to be overridden

on_startup(ctx: rkd.core.api.contract.ExecutionContext)→ None
When the command is triggered, and the git is not dirty

Interface method: to be overridden

print_success_msg(use_pipenv: bool, ctx: rkd.core.api.contract.ExecutionContext)→ None
Emits a success message

Interface method: to be overridden

:file:line-in-file

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib rkd.core.standardlib.LineInFileTaskpip install rkd== SE-
LECT VERSION

Similar to the Ansible’s lineinfile, replaces/creates/deletes a line in file.

Example usage:

echo "Number: 10" > test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert=
→˓'Number: $match[0] / new: 10'
cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert=
→˓'Number: $match[0] / new: 6'
cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert=
→˓'Number: 50'
cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert=
→˓'Number: $match[0] / new: 90'
cat test.txt

7.8. Built-in tasks 45

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.8.3 Python

This package was extracted from standardlib to rkd_python, but is maintained together with RKD as part of RKD core.

Set of Python-related tasks for building, testing and publishing Python packages.

:py:publish

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd_python rkd_python.PublishTaskpip install
rkd_python== SE-
LECT VERSION

Publish a package to the PyPI.

Example of usage:

rkd :py:publish --username=__token__ --password=.... --skip-existing --test

46 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

:py:build

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd_python rkd_python.BuildTaskpip install
rkd_python== SE-
LECT VERSION

Runs a build through setuptools.

:py:install

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd_python rkd_python.InstallTaskpip install
rkd_python== SE-
LECT VERSION

Installs the project as Python package using setuptools. Calls ./setup.py install.

:py:clean

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd_python rkd_python.CleanTaskpip install
rkd_python== SE-
LECT VERSION

Removes all files related to building the application.

:py:unittest

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd_python rkd_python.UnitTestTaskpip install
rkd_python== SE-
LECT VERSION

Runs Python’s built’in unittest module to execute unit tests.

Examples:

rkd :py:unittest
rkd :py:unittest -p some_test
rkd :py:unittest --tests-dir=../test

7.8. Built-in tasks 47

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.8.4 PHP

PhpScriptTask

• configure: Should be overridden only with @before_parent decorator

• inner_execute: Should be overridden preserving original parent after or before

• input: A string of PHP code, optionally

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.php.script rkd.php.script.PhpScriptTaskpip install rkd.php==
SELECT VERSION

Caution: This is a Base Task. It is not a Task to run, but to create a own, runnable Task basing on it.

Hint: This is an extendable task. Read more in Extending tasks chapter.

class rkd.php.script.PhpScriptTask
<sphinx:extending-tasks> Execute a PHP code (using a docker container) Can be extended - this is a base task.

Inherits settings from RunInContainerBaseTask.

Configuration:

• script: Path to script to load instead of stdin (could be a relative path)

• version: PHP version. Leave None to use default 8.0-alpine version

Example of usage:

version: org.riotkit.rkd/yaml/v2
imports:

- rkd.php.script.PhpScriptTask
tasks:

:yaml:test:php:
extends: rkd.php.script.PhpScriptTask
configure@before_parent: |

self.version = '7.2-alpine'
inner_execute@after_parent: |

self.in_container('php --version')
print('IM AFTER PARENT. At first the PHP code from "input" will␣

→˓be executed.')
return True

input: |
var_dump(getcwd());
var_dump(phpversion());

Example of usage with MultiStepLanguageAgnosticTask:

version: org.riotkit.rkd/yaml/v1
tasks:

(continues on next page)

48 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd.php/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

:exec:
environment:

PHP: '7.4'
IMAGE: 'php'

steps: |
#!rkd.php.script.PhpLanguage
phpinfo();

</sphinx:extending-tasks>

configure(event: rkd.core.execution.lifecycle.ConfigurationLifecycleEvent)→ None
Executes before all tasks are executed. ORDER DOES NOT MATTER, can be executed in parallel.

configure_argparse(parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--php', help='PHP version ("php" docker image tag)',␣

→˓default='8.0-alpine')
parser.add_argument('--image', help='Docker image name', default='php')

inner_execute(context: rkd.core.api.contract.ExecutionContext)→ bool
Execute a code when the container is up and running :param context: :return:

PhpLanguage

class rkd.php.script.PhpLanguage
Language extension for MultiStepLanguageAgnosticTask

version: org.riotkit.rkd/yaml/v1
tasks:

:exec:
environment:

PHP: '7.4'
IMAGE: 'php'

steps: |
#!rkd.php.script.PhpLanguage
phpinfo();

7.8.5 ENV

Manipulates the environment variables stored in a .env file

RKD is always loading an .env file on startup, those tasks in this package allows to manage variables stored in .env file
in the scope of a project.

7.8. Built-in tasks 49

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

:env:get

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.env rkd.core.standardlib.env.SetEnvTaskpip install rkd== SE-
LECT VERSION

Example of usage:

rkd :env:get --name COMPOSE_PROJECT_NAME

:env:set

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.env rkd.core.standardlib.env.GetEnvTaskpip install rkd== SE-
LECT VERSION

Example of usage:

rkd :env:set --name COMPOSE_PROJECT_NAME --value hello
rkd :env:set --name COMPOSE_PROJECT_NAME --ask
rkd :env:set --name COMPOSE_PROJECT_NAME --ask --ask-text="Please enter your name:"

7.8.6 JINJA

Renders JINJA2 files, and whole directories of files. Allows to render by pattern.

All includes and extends are by default looking in current working directory path.

:j2:render

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.jinjarkd.core.standardlib.jinja.FileRendererTaskpip install rkd== SE-
LECT VERSION

Renders a single file from JINJA2.

Example of usage:

rkd :j2:render -s SOURCE-FILE.yaml.j2 -o OUTPUT-FILE.yaml

Tip: This Task is ready to be imported and executed, but can be also easily extended.

50 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

class rkd.core.standardlib.jinja.FileRendererTask
Renders a .j2 file using environment as input variables

API

To be used inside “execute”:

• render(): Allows to render a JINJA template (from a string)

• render_to_file(): Renders a template to a file

Example of API usage in YAML (if want to inherit the task):

execute: |
with open('some-file.j2', 'r') as f:

task.render_to_file(f.read(), ctx, 'output.html')

Usage

./rkdw :j2:render --source=src.j2 --output=dst.html

Jinja2Language

Tip: This class was designed especially with MultiStepLanguageAgnosticTask in mind, but can be easily used without
it.

class rkd.core.standardlib.jinja.Jinja2Language
Jinja2 language extension for MultiStepLanguageAgnosticTask

Usage using MultiStepLanguageAgnosticTask

version: org.riotkit.rkd/yaml/v2
imports:

- rkd.core.standardlib.jinja.Jinja2Language
tasks:

:render:
steps: |

#!rkd.core.standardlib.jinja.Jinja2Language
Test - RKD_PATH environment variable is {{ RKD_PATH }}.
System PATH is {{ PATH }}, using shell {{ SHELL }}

Usage standalone

version: org.riotkit.rkd/yaml/v2
imports:

- rkd.core.standardlib.jinja.Jinja2Language
tasks:

:render:
extends: rkd.core.standardlib.jinja.Jinja2Language
input: |

Test - RKD_PATH environment variable is {{ RKD_PATH }}.
System PATH is {{ PATH }}, using shell {{ SHELL }}

7.8. Built-in tasks 51

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

./rkdw :render

./rkdw :render --output=/tmp/rendered

:j2:directory-to-directory

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.jinjarkd.core.standardlib.jinja.FileRendererTaskpip install rkd== SE-
LECT VERSION

Renders all files recursively in given directory to other directory.

Can remove source files after rendering them to the output files.

Tip: Use this Task in a docker entrypoint to create fully customizable configurations inside docker containers.

Tip: Note: Pattern is a regexp pattern that matches whole path, not only file name

Tip: Note: Exclude pattern is matching on SOURCE files, not on target files

Example usage:

rkd :j2:directory-to-directory \
--source="/some/path/templates" \
--target="/some/path/rendered" \
--delete-source-files \
--pattern="(.*).j2"

7.8.7 IO

ArchivePackagingBaseTask

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.io rkd.core.standardlib.io.ArchivePackagingBaseTaskpip install rkd== SE-
LECT VERSION

Caution: This is a Base Task. It is not a Task to run, but to create a own, runnable Task basing on it.

Hint: This is an extendable task. Read more in Extending tasks chapter.

class rkd.core.standardlib.io.ArchivePackagingBaseTask

52 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Supports:

• dry-run mode (do not write anything to disk, just print messages)

• copies directories recursively

• .gitignore files support (manually added using API method)

• can work both as preconfigured and fully on runtime

Example (preconfigured):

@extends(ArchivePackagingBaseTask)
def PackIntoZipTask():

def configure(task: ArchivePackagingBaseTask, event:␣
→˓ConfigurationLifecycleEvent):

task.archive_path = '/tmp/test-archive.zip'
task.consider_gitignore('.gitignore')
task.add('tests/samples/', './')

return [configure]

Example (on runtime):

@extends(ArchivePackagingBaseTask)
def PackIntoZipTask():

def configure(task: ArchivePackagingBaseTask, event:␣
→˓ConfigurationLifecycleEvent):

task.archive_path = '/tmp/test-archive.zip'

def execute(task: ArchivePackagingBaseTask):
task.consider_gitignore('.gitignore')
task.add('tests/samples/', './')
task.perform()

return [configure, execute]

add(src_path: str, target_path: Optional[str] = None)
Enqueue file/directory to be added to the archive file

Api configure

Parameters

• src_path –

• target_path – Optional - name under which the file will be added to the archive

Returns

configure_argparse(parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--php', help='PHP version ("php" docker image tag)',␣

→˓default='8.0-alpine')
parser.add_argument('--image', help='Docker image name', default='php')

execute(context: rkd.core.api.contract.ExecutionContext)→ bool
Executes a task. True/False should be returned as return

7.8. Built-in tasks 53

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.8.8 Docker

RunInContainerBaseTask

• inner_execute() should be used to execute a code while the container is running

• execute() should not be overridden

Package to import Single task
to import

PIP package to in-
stall

Stable version

rkd.core.standardlib.dockerrkd.core.standardlib.docker.RunInContainerBaseTaskpip install rkd== SE-
LECT VERSION

Caution: This is a Base Task. It is not a Task to run, but to create a own, runnable Task basing on it.

Hint: This is an extendable task. Read more in Extending tasks chapter.

class rkd.core.standardlib.docker.RunInContainerBaseTask
<sphinx:extending-tasks>

Allows to work inside of a temporary docker container.

Configuration:

• mount(): Mount directories/files as volumes

• add_file_to_copy(): Copy given files to container before container starts

• user: Container username, defaults to “root”

• shell: Shell binary path, defaults to “/bin/sh”

• docker_image: Full docker image name with registry (optional), group, image name and tag

• entrypoint: Entrypoint

• command: Command to execute on entrypoint

Runtime:

• copy_to_container(): Copy files/directory to container immediately

• in_container(): Execute inside container

Example:

version: org.riotkit.rkd/yaml/v1
imports:

- rkd.core.standardlib.docker.RunInContainerBaseTask

tasks:
:something-in-docker:

extends: rkd.core.standardlib.docker.RunInContainerBaseTask
configure: |

self.docker_image = 'php:7.3'
self.user = 'www-data'

(continues on next page)

54 Chapter 7. Keep learning

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

self.mount(local='./build', remote='/build')
self.add_file_to_copy('build.php', '/build/build.php')

inner_execute: |
self.in_container('php build.php')
return True

do not extend just "execute", because "execute" is used by␣
→˓RunInContainerBaseTask

to spawn docker container, run inner_execute(), and after just␣
→˓destroy the container

</sphinx:extending-tasks>

add_file_to_copy(local: str, remote: str)→ None
Schedules a file to be copied during execution time

Parameters

• local –

• remote –

Returns

copy_to_container(local: str, remote: str)→ None
Copies a file from host to container Can be used on execute stage

Api

Parameters

• local –

• remote –

Returns

execute(context: rkd.core.api.contract.ExecutionContext)→ bool
Executes a task. True/False should be returned as return

in_container(cmd: str, workdir: Optional[str] = None, user: Optional[str] = None)→ None
Execute a shell command inside of the container

Parameters

• cmd –

• workdir –

• user –

Returns

mount(local: str, remote: str, mount_type: str = 'bind', read_only: bool = False)→ None
Adds a mountpoint

Parameters

• local –

• remote –

• mount_type –

• read_only –

7.8. Built-in tasks 55

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Returns

7.9 Working with environment variables

In a project-focused conception RKD is allowing to define environment variables in three places.

7.9.1 1) Dotenv

.env file is loaded on each RKD startup from directory, where ./rkdw is launched.

7.9.2 2) Document scope

When operating on YAML there is a possibility to define a makefile-scoped environment variables, inline and loaded
from dotenv file.

version: org.riotkit.rkd/yaml/v1
environment:

STOP: "Police brutality"
env_files:

- .env-prod
tasks: {}

7.9.3 3) Task scope

version: org.riotkit.rkd/yaml/v1
tasks:

:task1:
environment:

STOP: "Police brutality"
env_files:

- .env-prod
steps: |

echo "STOP: ${STOP}"

7.9.4 4) Operating system scope

Traditional, expected way how to pass the environment variables.

STOP="Police brutality" ./rkdw :task1

56 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.9.5 Priority

Later has higher priority.

1. Dotenv loaded at startup

2. Document scope

3. Task scope

4. Operating system

7.10 Writing reusable tasks

There are different ways to achieve similar goal, to define the Task. In chapter about Syntax you can learn differences
between those multiple ways.

Now we will focus on Classic Python syntax which allows to define Tasks as classes, those classes can be packaged
into Python packages and reused across projects and event organizations.

7.10.1 Importing packages

Everytime a new project is created there is no need to duplicate same solutions over and over again. Even in simplest
makefiles there are ready-to-use tasks from rkd.core.standardlib imported and used.

version: org.riotkit.rkd/yaml/v2
imports:

- my_org.my_package1

7.10.2 Package index

A makefile can import a class or whole package. There is no any automatic class discovery, every package exports
what was intended to export.

Below is explained how does it work that Makefile can import multiple tasks from my_org.my_package1 without
specifying classes one-by-one.

Example package structure

my_package1/
my_package1/__init__.py
my_package1/script.py
my_package1/composer.py

Example __init__.py inside Python package e.g. my_org.my_package1

from rkd.core.api.syntax import TaskDeclaration
from .composer import ComposerIntegrationTask # (1)
from .script import PhpScriptTask, imports as script_imports # (2)

(3)
def imports():

(continues on next page)

7.10. Writing reusable tasks 57

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

return [
TaskDeclaration(ComposerIntegrationTask()) # (5)

] + script_imports() # (4)

• (1): ComposerIntegrationTask was imported from composer.py file

• (2): imports as script_imports other def imports() from script.py was loaded and used in (4)

• (3): def imports() defines which tasks will appear automatically in your build, when you import whole module,
not a single class

• (5): TaskDeclaration can decide about custom task name, custom working directory, if the task is internal
which means - if should be listed on :tasks

7.10.3 Task construction

Basic example of how the Task looks

class GetEnvTask(TaskInterface):
"""Gets environment variable value"""

def get_name(self) -> str:
return ':get'

def get_group_name(self) -> str:
return ':env'

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--name', '-e', help='Environment variable name',␣

→˓required=True)

def execute(self, context: ExecutionContext) -> bool:
self.io().out(os.getenv(context.get_arg('--name'), ''))

return True

Basic configuration methods to implement

• get_name(): Define a name e.g. :my-task

• get_group_name(): Optionally a group name e.g. :app1

• get_declared_envs(): List of allowed environment variables to be used inside of this Task

• configure_argparse(): Commandline switches configuration, uses Python’s native ArgParse

• get_configuration_attributes(): Optionally. If our Task is designed to be used as Base Task of other Task, then
there we can limit which methods and class attributes can be called from configure() method

class rkd.core.api.contract.TaskInterface

abstract configure_argparse(parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

58 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--php', help='PHP version ("php" docker image tag)',␣

→˓default='8.0-alpine')
parser.add_argument('--image', help='Docker image name', default='php')

classmethod get_declared_envs()→ Dict[str, Union[str, rkd.core.api.contract.ArgumentEnv]]
Dictionary of allowed envs to override: KEY -> DEFAULT VALUE

All environment variables fetched from the ExecutionContext needs to be defined there. Declared values
there are automatically documented in –help

@classmethod
def get_declared_envs(cls) -> Dict[str, Union[str, ArgumentEnv]]:

return {
'PHP': ArgumentEnv('PHP', '--php', '8.0-alpine'),
'IMAGE': ArgumentEnv('IMAGE', '--image', 'php')

}

abstract get_group_name()→ str
Group name where the task belongs eg. “:publishing”, can be empty.

abstract get_name()→ str
Task name eg. “:sh”

Basic action methods

• execute(): Contains the Task logic, there is access to environment variables, commandline switches and class
attributes

• inner_execute(): If you want to create a Base Task, then implement a call to this method inside execute(), so
the Task that extends your Base Task can inject code inside execute() you defined

• configure(): If our Task extends other Task, then there is a possibility to configure Base Task in this method

• compile(): Code that will execute on compilation stage. There is an access to CompilationLifecycleEvent
which allows several operations such as task expansion (converting current task into a Pipeline with dynamically
created Tasks)

class rkd.core.api.contract.ExtendableTaskInterface

compile(event: CompilationLifecycleEvent)→ None
Execute code after all tasks were collected into a single context

configure(event: ConfigurationLifecycleEvent)→ None
Executes before all tasks are executed. ORDER DOES NOT MATTER, can be executed in parallel.

abstract execute(context: rkd.core.api.contract.ExecutionContext)→ bool
Executes a task. True/False should be returned as return

inner_execute(ctx: rkd.core.api.contract.ExecutionContext)→ bool
Method that can be executed inside execute() - if implemented.

Use cases:

• Allow child Task to inject code between e.g. database startup and database shutdown to execute
some operations on the database

Parameters ctx –

7.10. Writing reusable tasks 59

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Returns

Additional methods that can be called inside execute() and inner_execute()

• io(): Provides logging inside execute() and configure()

• rkd() and sh(): Executes commands in subshells

• py(): Executes Python code isolated in a subshell

class rkd.core.api.contract.ExtendableTaskInterface

io()→ rkd.core.api.inputoutput.IO
Gives access to Input/Output object

py(code: str = '', become: Optional[str] = None, capture: bool = False, script_path: Optional[str] = None,
arguments: str = '')→ Optional[str]

Executes a Python code in a separate process

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

rkd(args: list, verbose: bool = False, capture: bool = False)→ str
Spawns an RKD subprocess

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

sh(cmd: str, capture: bool = False, verbose: bool = False, strict: bool = True, env: Optional[dict] = None,
use_subprocess: bool = False)→ Optional[str]

Executes a shell script in bash. Throws exception on error. To capture output set capture=True

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

7.11 ADVANCED usage

7.11.1 Troubleshooting

1. Output is corrupted or there is no output from a shell command executed inside of a task

The output capturing is under testing. The Python’s subprocess module is skipping “sys.stdout” and “sys.stderr” by
writing directly to /dev/stdout and /dev/stderr, which makes output capturing difficult.

Run rkd in compat mode to turn off output capturing from shell commands:

RKD_COMPAT_SUBPROCESS=true rkd :some-task-here

60 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.11.2 Loading priority

Environment variables loading order from .env and from .rkd

Legend: Top is most important, the variables loaded on higher level are not overridden by lower level

1. Operating system environment

2. Current working directory .env file

3. .env files from directories defined in RKD_PATH

Environment variables loading order in YAML syntax

Legend: Top - is most important

1. Operating system environment

2. .env file

3. Per-task “environment” section

4. Per-task “env_file” imports

5. Global “environment” section

6. Global “env_file” imports

Order of loading of makefile files in same .rkd directory

Legend: Lower has higher priority (next is appending changes to previous)

1. *.py

2. *.yaml

3. *.yml

Paths and inheritance

RKD by default search for .rkd directory in current execution directory - ./.rkd.

The search order is following (from lower to higher load priority):

1. RKD’s internals (we provide a standard tasks like :tasks, :sh, :exec and more)

2. /usr/lib/rkd

3. User’s home ~/.rkd

4. Current directory ./.rkd

5. RKD_PATH

Custom path defined via environment variable

RKD_PATH allows to define multiple paths that would be considered in priority.

export RKD_PATH="/some/path:/some/other/path:/home/user/riotkit/.rkd-second"

7.11. ADVANCED usage 61

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

How the makefiles are loaded?

Each makefile is loaded in order, next makefile can override tasks of previous. That’s why we at first load internals,
then your tasks.

Tasks execution

Tasks are executed one-by-one as they are specified in commandline or in TaskAlias declaration (commandline argu-
ments).

rkd :task-1 :task-2 :task-3

1. task-1

2. task-2

3. task-3

A –keep-going can be specified after given task eg. :task-2 –keep-going, to ignore a single task failure and in conse-
quence allow to go to the next task regardless of result.

7.11.3 Tasks development - more examples

RKD has multiple approaches to define a task. The first one is simpler - in makefile in YAML or in Python. The second
one is a set of tasks as a Python package.

Option 1) Simplest - in YAML syntax

Definitely the simplest way to define a task is to use YAML syntax, it is recommended for beginning users.

Example 1:

version: org.riotkit.rkd/yaml/v1
imports:
- rkd.standardlib.jinja.RenderDirectoryTask

tasks:
see this task in "rkd :tasks"
run with "rkd :examples:bash-test"
:examples:bash-test:

description: Execute an example command in bash - show only python related tasks
steps: |

echo "RKD_DEPTH: ${RKD_DEPTH} # >= 2 means we are running rkd-in-rkd"
echo "RKD_PATH: ${RKD_PATH}"
rkd --silent :tasks | grep ":py"

try "rkd :examples:arguments-test --text=Hello --test-boolean"
:examples:arguments-test:

description: Show example usage of arguments in Bash
arguments:

"--text":
help: "Adds text message"
required: True

"--test-boolean":
(continues on next page)

62 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

help: "Example of a boolean flag"
action: store_true # or store_false

steps:
- |
#!bash
echo " ==> In Bash"
echo " Text: ${ARG_TEXT}"
echo " Boolean test: ${ARG_TEST_BOOLEAN}"

- |
#!python
print(' ==> In Python')
print(' Text: %s ' % ctx.args['text'])
print(' Text: %s ' % str(ctx.args['test_boolean']))
return True

run with "rkd :examples:list-standardlib-modules"
:examples:list-standardlib-modules:

description: List all modules in the standardlib
steps:
- |
#!python
ctx: ExecutionContext
this: TaskInterface

import os

print('Hello world')
print(os)
print(ctx)
print(this)

return True

:examples:with-other-workdir:
description: "This task runs in /tmp"
workdir: "/tmp"
steps: |

echo "I run in"
pwd

Example 2:

version: org.riotkit.rkd/yaml/v1

environment:
GLOBALLY_DEFINED: "16 May 1966, seamen across the UK walked out on a nationwide␣

→˓strike for the first time in half a century. Holding solid for seven weeks, they won a␣
→˓reduction in working hours from 56 to 48 per week "

env_files:
- env/global.env

(continues on next page)

7.11. ADVANCED usage 63

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

tasks:
:hello:

description: |
#1 line: 11 June 1888 Bartolomeo Vanzetti, Italian-American anarchist who␣

→˓was framed & executed alongside Nicola Sacco, was born.
#2 line: This is his short autobiography:
#3 line: https://libcom.org/library/story-proletarian-life

environment:
INLINE_PER_TASK: "17 May 1972 10,000 schoolchildren in the UK walked out on␣

→˓strike in protest against corporal punishment. Within two years, London state schools␣
→˓banned corporal punishment. The rest of the country followed in 1987."

env_files: ['env/per-task.env']
steps: |

echo " >> ENVIRONMENT VARIABLES DEMO"
echo "Inline defined in this task: ${INLINE_PER_TASK}\n\n"
echo "Inline defined globally: ${GLOBALLY_DEFINED}\n\n"
echo "Included globally - global.env: ${TEXT_FROM_GLOBAL_ENV}\n\n"
echo "Included in task - per-task.env: ${TEXT_PER_TASK_FROM_FILE}\n\n"

Explanation of examples:

1. “arguments” is an optional dict of arguments, key is the argument name, subkeys are passed directly to argparse

2. “steps” is a mandatory list or text with step definition in Bash or Python language

3. “description” is an optional text field that puts a description visible in “:tasks” task

4. “workdir” allows to optionally specify a working directory for a task

5. “environment” is a dict of environment variables that can be defined

6. “env_files” is a list of paths to .env files that should be included

7. “imports” imports a Python package that contains tasks to be used in the makefile and in shell usage

Option 2) For Python developers - task as a class

This way allows to create tasks in a structure of a Python module. Such task can be packaged, then published to eg.
PyPI (or other private repository) and used in multiple projects.

Each task should implement methods of rkd.core.api.contract.TaskInterface interface, that’s the basic rule.

Following example task could be imported with path rkd.standardlib.ShellCommandTask, in your own task you
would have a different package name instead of rkd.standardlib.

Example task from RKD standardlib:

class ShellCommandTask(ExtendableTaskInterface, MultiStepLanguageExtensionInterface):
"""
Executes shell commands and scripts

Extendable in two ways:
- overwrite stdin()/input to execute a script
- overwrite execute() to execute a Python code that could contain calls to self.

→˓sh()
(continues on next page)

64 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

"""

to be overridden in compile()
is_cmd_required: bool # Is --cmd switch required to be set?
code: Optional[str] # (Optional) Execute script from a variable value
name: Optional[str] # (Optional) Task name
step_num: int

def __init__(self):
self.is_cmd_required = True
self.code = None
self.name = None
self.step_num = 0

def get_name(self) -> str:
return ':sh' if not self.name else self.name

def get_group_name(self) -> str:
return ''

def get_configuration_attributes(self) -> List[str]:
return ['is_cmd_required']

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--cmd', '-c', help='Shell command', required=self.is_cmd_

→˓required)

def with_predefined_details(self, code: str, name: str, step_num: int) ->
→˓'ShellCommandTask':

clone = copy(self)
clone.code = code
clone.name = name
clone.step_num = step_num
clone.is_cmd_required = False

return clone

def execute(self, context: ExecutionContext) -> bool:
cmd = ''

if context.get_input():
cmd = context.get_input().read()

if context.get_arg('cmd'):
cmd = context.get_arg('cmd')

if self.code:
cmd = self.code

try:
self.sh() and self.io() are part of the base class
if cmd:

(continues on next page)

7.11. ADVANCED usage 65

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

self.sh(cmd, capture=False)
self.inner_execute(context)

except CalledProcessError as e:
self.io().error_msg(str(e))
return False

return True

Explanation of example:

1. The docstring in Python class is what will be shown in :tasks as description. You can also define your description
by implementing def get_description() -> str

2. Name and group name defines a full name eg. :your-project:build

3. def configure_argparse() allows to inject arguments, and –help description for a task - it’s a standard Python’s
argparse object to use

4. def execute() provides a context of execution, please read Tasks API chapter about it. In short words you can get
commandline arguments, environment variables there.

5. self.io() is providing input-output interaction, please use it instead of print, please read Tasks API chapter about
it.

Option 3) Quick and elastic way in Python code of Makefile.py

Multiple Makefile files can be used at one time, you don’t have to choose between YAML and Python. This opens a
possibility to define more advanced tasks in pure Python, while you have most of the tasks in YAML. It’s elastic - use
YAML, or Python or both.

Let’s define then a task in Python in a simplest method.

Makefile.py

from argparse import ArgumentParser
from rkd.core.api.contract import ExecutionContext
from rkd.core.api.decorators import extends
from rkd.core.api.syntax import ExtendedTaskDeclaration
from rkd.core.standardlib.syntax import PythonSyntaxTask

@extends(PythonSyntaxTask)
def hello_task():

"""
Prints your name
"""

def configure_argparse(task: PythonSyntaxTask, parser: ArgumentParser):
parser.add_argument('--name', required=True, help='Allows to specify a name')

def execute(task: PythonSyntaxTask, ctx: ExecutionContext):
task.io().info_msg(f'Hello {ctx.get_arg("--name")}, I\'m talking in Python, and␣

→˓you?')
return True

(continues on next page)

66 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

return [configure_argparse, execute]

IMPORTS = [
ExtendedTaskDeclaration(hello_task, name=':hello2')

]

Please check Tasks API for interfaces description

7.11.4 Global environment variables

Global switches designed to customize RKD per project. Put environment variables into your .env file, so you will no
have to prepend them in the commandline every time.

Read also about Environment variables loading order from .env and from .rkd

RKD_WHITELIST_GROUPS

Allows to show only selected groups in the “:tasks” list. All tasks from hidden groups are still callable.

Examples:

RKD_WHITELIST_GROUPS=:rkd, rkd :tasks
RKD_WHITELIST_GROUPS=:rkd rkd :tasks

RKD_ALIAS_GROUPS

Alias group names, so it can be shorter, or even group names could be not typed at all.

Notice: :tasks will rename a group with a first defined alias for this group

Examples:

RKD_ALIAS_GROUPS=":rkd->:r" rkd :tasks :r:create-structure
RKD_ALIAS_GROUPS=":rkd->" rkd :tasks :create-structure

RKD_UI

Allows to toggle (true/false) the UI - messages like “Executing task X” or “Task finished”, leaving only tasks stdout,
stderr and logs.

7.11. ADVANCED usage 67

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

RKD_AUDIT_SESSION_LOG

Logs output of each executed task, when set to “true”.

Example structure of logs:

Note: This example requires "rkd-harbor" package to be installed from PyPI
RKD_AUDIT_SESSION_LOG=true harbor :service:list # RiotKit Harbor is another project␣
→˓based on RKD

ls .rkd/logs/2020-06-11/11\:06\:02.068556/
task-1-init.log task-2-harbor_service_list.log

RKD_BIN

Defines a command that invokes RKD eg. rkd. When a custom distribution is present, then this value can different.
For example project RiotKit Harbor has it’s own command harbor, which is based on RKD, so the RKD_BIN=harbor
would be defined in such project.

RKD_BIN is automatically generated, when executing task in a separate process, but it can be also set globally.

RKD_DIST_NAME

Name of the Python package that wraps RKD (similar case as RKD_BIN use case)

RKD_SYS_LOG_LEVEL

Use for debugging. The variable is read in very early stage of RKD initialization, before context preparation.

RKD_SYS_LOG_LEVEL=debug rkd :tasks

RKD_IMPORTS

Allows to import a task, or group of tasks (module) inline, without need to create a Makefile. Useful in daily tasks to
create handy shortcuts, also very useful for testing tasks and embedding them inside other applications.

“:” character is a separator for multiple imports.

note: Those examples requires "rkt_utils" package from PyPI
RKD_IMPORTS="rkt_utils.docker" rkd :docker:tag
RKD_IMPORTS="rkt_utils.docker:rkt_ciutils.boatci:rkd_python" rkd :tasks

68 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

RKD_DEPTH

Internally used to detect if RKD is called from inside of RKD

7.11.5 Custom distribution

RiotKit Do can be used as a transparent framework for writing tasks for various usage, especially for specialized usage.
To simplify usage for end-user RKD allows to create a custom distribution.

Custom distribution allows to:

• Define custom ‘binary’ name eg. “harbor” instead of “rkd”

• Hide unnecessary tasks in custom ‘binary’ (filter by groups - whitelist)

• Make shortcuts to tasks: Skip writing group name, make a group name to be appended by default

Example

import os
from rkd import main as rkd_main

def env_or_default(env_name: str, default: str):
return os.environ[env_name] if env_name in os.environ else default

def main():
os.environ['RKD_WHITELIST_GROUPS'] = env_or_default('RKD_WHITELIST_GROUPS', ':env,

→˓:harbor,')
os.environ['RKD_ALIAS_GROUPS'] = env_or_default('RKD_ALIAS_GROUPS', '->:harbor')
os.environ['RKD_UI'] = env_or_default('RKD_UI', 'false')
rkd_main()

if __name__ == '__main__':
main()

$ harbor :tasks
[global]
:sh # Executes shell scripts
:exec # Spawns a shell process
:tasks # Lists all enabled tasks
:version # Shows version of RKD and of all␣
→˓loaded tasks

[harbor]
:compose:ps # List all containers
:start # Create and start containers
:stop # Stop running containers
:remove # Forcibly stop running containers and␣
→˓remove (keeps volumes)
:service:list # Lists all defined containers in YAML␣
→˓files (can be limited by --profile selector)
:service:up # Starts a single service

(continues on next page)

7.11. ADVANCED usage 69

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

:service:down # Brings down the service without␣
→˓deleting the container
:service:rm # Stops and removes a container and it
→˓'s images
:pull # Pull images specified in containers␣
→˓definitions
:restart # Restart running containers
:config:list # Gets environment variable value
:config:enable # Enable a configuration file - YAML
:config:disable # Disable a configuration file - YAML
:prod:gateway:reload # Reload gateway, regenerate missing␣
→˓SSL certificates
:prod:gateway:ssl:status # Show status of SSL certificates
:prod:gateway:ssl:regenerate # Regenerate all certificates with␣
→˓force
:prod:maintenance:on # Turn on the maintenance mode
:prod:maintenance:off # Turn on the maintenance mode
:git:apps:update # Fetch a git repository from the␣
→˓remote
:git:apps:update-all # List GIT repositories
:git:apps:set-permissions # Make sure that the application would␣
→˓be able to write to allowed directories (eg. upload directories)
:git:apps:list # List GIT repositories

[env]
:env:get # Gets environment variable value
:env:set # Sets environment variable in the .
→˓env file

Use --help to see task environment variables and switches, eg. rkd :sh --help, rkd --help

Notices for above example:

• No need to type eg. :harbor:config:list - just :config:list (RKD_ALIAS_GROUPS used)

• No “rkd” group is displayed (RKD_WHITELIST_GROUPS used)

• There is no information about task name (RKD_UI used)

Read more in Global environment variables

Customizing RKD resource files

Files like banner, internal Makefiles can be overridden in user’s home directory, or in operating system-wide directory.

Here is the priority list, first matching result stops the search:

dist_name = env.distribution_name() # RKD_DIST_NAME env variable

paths = [# eg. ~/.local/share/rkd/banner.txt os.path.expanduser((‘~/.local/share/%s/’ + path) %
dist_name),

eg. /home/andrew/.local/lib/python3.8/site-packages/rkd/misc/banner.txt
(get_user_site_packages() + ‘/%s/misc/’ + path) % dist_name,

70 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

eg. /usr/lib/python3.8/site-packages/rkd/misc/banner.txt (_get_global_site_packages() +
‘/%s/misc/’ + path) % dist_name,

eg. /usr/share/rkd/banner.txt (‘/usr/share/%s/’ + path) % dist_name

7.11.6 Tasks API

Each task must implement a TaskInterface (directly, or through a Base Task)

Attention: Methods marked as abstract must be implemented by your task that extends directly from TaskIn-
terface.

Tip: During configuration and execution stage every task is having it’s own ExecutionContext instance. Execution-
Context (called ctx) gives access to parameters, environment variables, user input (e.g. stdin) Do not try to manually
read from stdin, or os.environment - read more about this topic in Best practices chapter.

class rkd.core.api.contract.TaskInterface

abstract configure_argparse(parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--php', help='PHP version ("php" docker image tag)',␣

→˓default='8.0-alpine')
parser.add_argument('--image', help='Docker image name', default='php')

copy_internal_dependencies(task)
Allows to execute a task-in-task, by copying dependent services from one task to other task

exec(cmd: str, capture: bool = False, background: bool = False)→ Optional[str]
Starts a process in shell. Throws exception on error. To capture output set capture=True

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

abstract execute(context: rkd.core.api.contract.ExecutionContext)→ bool
Executes a task. True/False should be returned as return

extends_task()
Provides information if this Task has a Parent Task

Returns

format_task_name(name: str)→ str
Allows to add a fancy formatting to the task name, when the task is displayed eg. on the :tasks list

get_become_as()→ str
User name in UNIX/Linux system, optional. When defined, then current task will be executed as this user
(WARNING: a forked process would be started)

classmethod get_declared_envs()→ Dict[str, Union[str, rkd.core.api.contract.ArgumentEnv]]
Dictionary of allowed envs to override: KEY -> DEFAULT VALUE

7.11. ADVANCED usage 71

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

All environment variables fetched from the ExecutionContext needs to be defined there. Declared values
there are automatically documented in –help

@classmethod
def get_declared_envs(cls) -> Dict[str, Union[str, ArgumentEnv]]:

return {
'PHP': ArgumentEnv('PHP', '--php', '8.0-alpine'),
'IMAGE': ArgumentEnv('IMAGE', '--image', 'php')

}

get_full_name()
Returns task full name, including group name

abstract get_group_name()→ str
Group name where the task belongs eg. “:publishing”, can be empty.

abstract get_name()→ str
Task name eg. “:sh”

io()→ rkd.core.api.inputoutput.IO
Gives access to Input/Output object

py(code: str = '', become: Optional[str] = None, capture: bool = False, script_path: Optional[str] = None,
arguments: str = '')→ Optional[str]

Executes a Python code in a separate process

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

rkd(args: list, verbose: bool = False, capture: bool = False)→ str
Spawns an RKD subprocess

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

sh(cmd: str, capture: bool = False, verbose: bool = False, strict: bool = True, env: Optional[dict] = None,
use_subprocess: bool = False)→ Optional[str]

Executes a shell script in bash. Throws exception on error. To capture output set capture=True

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

should_fork()→ bool
Decides if task should be ran in a separate Python process (be careful with it)

silent_sh(cmd: str, verbose: bool = False, strict: bool = True, env: Optional[dict] = None)→ bool
sh() shortcut that catches errors and displays using IO().error_msg()

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

72 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

To include a task, wrap it in a declaration

Note: Task declaration declares a Task (TaskInterface implementation) to be a runnable task imported into a given
Makefile.

Tip: With TaskDeclaration there is a possibility to customize things like task name, environment, working directory
and other attributes.

class rkd.core.api.syntax.TaskDeclaration(task: rkd.core.api.contract.TaskInterface, env:
Optional[Dict[str, str]] = None, args: Optional[List[str]] =
None, workdir: Optional[str] = None, internal:
Optional[bool] = None, name: Optional[str] = None)

Task Declaration is a DECLARED USAGE of a Task (instance of TaskInterface)

Examples of usage:

TaskDeclaration(MyNiceTask(), env={'SOME': 'thing'}, workdir='/tmp', name=
→˓':custom:task:name')

To create an alias for task or multiple tasks

Note: TaskAlias is a simplified pipeline form, it is a chain of tasks written in a string form.

class rkd.core.api.syntax.TaskAliasDeclaration(name: str, to_execute: List[Union[str,
rkd.core.api.contract.PipelinePartInterface]], env:
Optional[Dict[str, str]] = None, description: str = '')

Deprecated: Name will be removed in RKD 6.0

Execution context provides parsed shell arguments and environment variables

class rkd.core.api.contract.ExecutionContext(declaration:
rkd.core.api.contract.TaskDeclarationInterface, parent:
Op-
tional[rkd.core.api.contract.GroupDeclarationInterface]
= None, args: Dict[str, str] = {}, env: Dict[str, str] = {},
defined_args: Dict[str, dict] = {})

Defines which objects could be accessed by Task. It’s a scope of a single task execution.

can_mutate_globals()→ bool
Is task having a special permissions to mutate globals such as OS environment :return:

get_arg(name: str)→ Optional[str]
Get argument or option

Usage: ctx.get_arg(‘–name’) # for options ctx.get_arg(‘name’) # for arguments

Raises: KeyError when argument/option was not defined

Returns: Actual value or default value

7.11. ADVANCED usage 73

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

get_arg_or_env(name: str)→ Optional[str]
Provides value of user input

Usage: get_arg_or_env(‘–file-path’) resolves into FILE_PATH env variable, and –file-path switch
(file_path in argparse)

Behavior: When user provided explicitly switch eg. –history-id, then it’s value will be taken in priority.
If switch –history-id was not used, but user provided HISTORY_ID environment variable, then it will
be considered.

If no switch provided and no environment variable provided, but a switch has default value - it would
be returned.

If no switch provided and no environment variable provided, the switch does not have default, but
environment variable has a default value defined, it would be returned.

When the –switch has default value (user does not use it, or user sets it explicitly to default value), and
environment variable SWITCH is defined, then environment variable would be taken.

From RKD 2.1 the environment variable names can be mapped to any ArgParse switch.

Below example maps “COMMAND” environment variable to “–cmd” switch.

def get_declared_envs(self) -> Dict[str, Union[str, ArgumentEnv]]:
return {

'COMMAND': ArgumentEnv(name='COMMAND', switch='--cmd', default='')
}

Raises: MissingInputException: When no switch and no environment variable was provided, then an ex-
ception is thrown.

get_env(name: str, switch: str = '', error_on_not_used: bool = False)
Get environment variable value

Interaction with input and output

Tip: From inside a Task the IO can be accessed with self.io()

Caution: Every task has it’s own instance of IO, with customized per-task log level.

class rkd.core.api.inputoutput.IO
Interacting with input and output - stdout/stderr/stdin, logging

add_output_processor(callback: Callable[[Union[str, bytes], str], Union[str, bytes]])
Registers a output processing callback Each byte outputted by this IO instance will go through a set of
registered processors

Example use cases:

• Hide sensitive information (secrets)

• Reformat output

• Strip long stdouts from commands

• Change colors

• Add/remove formatting

74 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Parameters callback –

Returns

capture_descriptors(target_files: List[str] = None, stream=None, enable_standard_out: bool = True)
Capture stdout and stderr from a block of code - use with ‘with’

critical(text)
Logger: critical

debug(text)
Logger: debug

err(text)
Standard error

errln(text)
Standard error + newline

error(text)
Logger: error

error_msg(text)
Error message

static format_table(header: list, body: list, tablefmt: str = 'simple', floatfmt: str = 'g', numalign: str =
'decimal', stralign: str = 'left', missingval: str = '', showindex: str = 'default',
disable_numparse: bool = False, colalign: Optional[str] = None)

Renders a table

Parameters: header: body: tablefmt: floatfmt: numalign: stralign: missingval: showindex: dis-
able_numparse: colalign:

Returns: Formatted table as string

h1(text)
Heading #1 (optional output)

h2(text)
Heading #2 (optional output)

h3(text)
Heading #3 (optional output)

h4(text)
Heading #3 (optional output)

info(text)
Logger: info

info_msg(text)
Informational message (optional output)

internal(text)
Logger: internal Should be used only by RKD core for more intensive logging

internal_lifecycle(text)
Should be used only by RKD core for more intensive logging :param text: :return:

is_silent()→ bool
Is output silent? In silent mode OPTIONAL MESSAGES are not shown

opt_errln(text)
Optional errln()

7.11. ADVANCED usage 75

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

opt_out(text)
Optional output - fancy output skipped in –silent mode

opt_outln(text)
Optional output - fancy output skipped in –silent mode + newline

out(text)
Standard output

outln(text)
Standard output + newline

print_group(text)
Prints a colored text inside brackets [text] (optional output)

print_line()
Prints a newline

print_opt_line()
Prints a newline (optional output)

print_separator(status: Optional[bool] = None)
Prints a text separator (optional output)

success_msg(text)
Success message (optional output)

warn(text)
Logger: warn

warn_msg(text)→ None
Warning message (optional output)

Storing temporary files

Tip: From inside a Task the TempManager can be accessed with self.temp

class rkd.core.api.temp.TempManager(chdir: str = './.rkd/')
Manages temporary files inside .rkd directory Using this class you make sure your code is more safe to use on
Continuous Integration systems (CI)

Usage: path = self.temp.assign_temporary_file(mode=0o755)

assign_temporary_file(mode: int = 493)→ str
Assign a path for writing temporary files in RKD workspace

Note: The RKD is executing the finally_clean_up() at the end of each task

Usage:

try: path = RKDTemp.assign_temporary_file_path() # (. . .) some action there

finally: RKDTemp.finally_clean_up()

finally_clean_up()
Used to clean up all temporary files at the end of the code execution

TaskExecutor is running this method after each finished task

76 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Parsing RKD syntax

class rkd.core.api.parsing.SyntaxParsing

static parse_import_as_type(import_str: str)→ Type[rkd.core.api.contract.TaskInterface]
Import a Python class as a type

Example: rkd.core.standardlib.jinja.FileRendererTask

Parameters import_str –

Returns

classmethod parse_imports_by_list_of_classes(classes_or_modules: List[str])→
List[rkd.core.api.syntax.TaskDeclaration]

Parses a List[str] of imports, like in YAML syntax. Produces a List[TaskDeclaration] with imported list of
tasks.

Could be used to import & validate RKD tasks.

Examples:

• rkd.core.standardlib

• rkd.core.standardlib.jinja.FileRendererTask

:raises ParsingException :return:

Testing

Tip: BasicTestingCase is best for unit testing

class rkd.core.api.testing.BasicTestingCase(methodName='runTest')

Provides minimum of:

• Doing backup of environment and cwd

• Methods for mocking task dependencies (RKD-specific like ExecutionContext)

environment(environ: dict)
Mocks environment

Example usage:

with self.environment({'RKD_PATH': SCRIPT_DIR_PATH + '/../docs/examples/env-
→˓in-yaml/.rkd'}):
code there

Parameters environ –

Returns

static list_to_str(in_list: list)→ List[str]
Execute __str__ on each list element, and replace element with the result

7.11. ADVANCED usage 77

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

static mock_execution_context(task: rkd.core.api.contract.TaskInterface, args: Optional[Dict[str,
Union[str, bool]]] = None, env: Optional[Dict[str, str]] = None,
defined_args: Optional[Dict[str, dict]] = None)→
rkd.core.api.contract.ExecutionContext

Prepares a simplified rkd.core.api.contract.ExecutionContext instance

Parameters

• task –

• args –

• env –

• defined_args –

Returns

static satisfy_task_dependencies(task: rkd.core.api.contract.TaskInterface, io:
Optional[rkd.core.api.inputoutput.IO] = None)→
rkd.core.api.contract.TaskInterface

Inserts required dependencies to your task that implements rkd.core.api.contract.TaskInterface

Parameters

• task –

• io –

Returns

setUp()→ None
Hook method for setting up the test fixture before exercising it.

tearDown()→ None
Hook method for deconstructing the test fixture after testing it.

Tip: FunctionalTestingCase should be using for tests that are running single task and asserting output contents.

class rkd.core.api.testing.FunctionalTestingCase(methodName='runTest')
Provides methods for running RKD task or multiple tasks with output and exit code capturing. Inherits Output-
CapturingSafeTestCase.

execute_mocked_task_and_get_output(task: rkd.core.api.contract.TaskInterface, args=None,
env=None)→ str

Run a single task, capturing it’s output in a simplified way. There is no whole RKD bootstrapped in this
operation.

Parameters

• task (TaskInterface) –

• args (dict) –

• env (dict) –

Returns

classmethod filter_out_task_events_from_log(out: str)
Produces an array of events unformatted

78 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

[
"Executing :sh -c echo 'Rocker' [part of :example]",
"Executing :sh -c echo 'Kropotkin' [part of :example]",
'Executing :sh -c echo "The Conquest of Bread"; exit 1 [part of :example]',
'Retrying :sh -c echo "The Conquest of Bread"; exit 1 [part of :example]',
'Executing :sh -c exit 0 ',
'Executing :sh -c echo "Modern Science and Anarchism"; [part of :example]'

]

Parameters out –

Returns

run_and_capture_output(argv: list, verbose: bool = False)→ Tuple[str, int]
Run task(s) and capture output + exit code. Whole RKD from scratch will be bootstrapped there.

Example usage: full_output, exit_code = self.run_and_capture_output([‘:tasks’])

Parameters

• argv (list) – List of tasks, arguments, commandline switches

• verbose (bool) – Print all output also to stdout

Returns

with_temporary_workspace_containing(files: Dict[str, str])
Creates a temporary directory as a workspace and fills up with files specified in “file” parameter

Parameters files – Dict of [filename: contents to write to a file]

Returns

class rkd.core.api.testing.OutputCapturingSafeTestCase(methodName='runTest')
Provides hooks for keeping stdout/stderr immutable between tests.

setUp()→ None
Hook method for setting up the test fixture before exercising it.

tearDown()→ None
Hook method for deconstructing the test fixture after testing it.

7.11.7 Working with YAML files

Makefile.yaml has checked syntax before it is parsed by RKD. A jsonschema library was used to validate YAML files
against a JSON formatted schema file.

This gives the early validation of typing inside of YAML files, and a clear message to the user about place where the
typo is.

7.11. ADVANCED usage 79

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

YAML parsing API

Schema validation is a part of YAML parsing, the preferred way of working with YAML files is to not only parse the
schema but also validate. In result of this there is a class that wraps yaml library - rkd.yaml_parser.YamlFileLoader,
use it instead of plain yaml library.

Notice: The YAML and schema files are automatically searched in .rkd, .rkd/schema directories, including RKD_PATH

Example usage:

from rkd.yaml_parser import YamlFileLoader

parsed = YamlFileLoader([]).load_from_file('deployment.yml', 'org.riotkit.harbor/
→˓deployment/v1')

FAQ

1. FileNotFoundError: Schema “my-schema-name.json” cannot be found, looked in: [‘. . . /riotkit-harbor’,
‘/. . . /riotkit-harbor/schema’, ‘/. . . /riotkit-harbor/.rkd/schema’, ‘/home/. . . /.rkd/schema’, ‘/usr/lib/rkd/schema’,
‘/usr/lib/python3.8/site-packages/rkd/internal/schema’]

The schema file cannot be found, the name is invalid or file missing. The schema should be placed somewhere in the
.rkd/schema directory - in global, in home directory or in project.

2. rkd.exception.YAMLFileValidationError: YAML schema validation failed at path “tasks” with error: [] is not of
type ‘object’

It means you created a list (starts with “-“) instead of dictionary at “tasks” path.

Example of what went wrong:

tasks:
- description: first
- description: second

Example of how it should be as an ‘object’ (dictionary):

tasks:
first:

description: first

second:
description: second

API

class rkd.core.yaml_parser.YamlFileLoader(paths: List[str])
YAML loader extended by schema validation support

YAML schema is stored as JSON files in .rkd/schema directories. The Loader looks in all paths defined in
RKD_PATH as well as in paths provided by ApplicationContext

find_path_by_name(filename: str, subdir: str)→ str
Find schema in one of RKD directories or in current path

load(stream, schema_name: str)
Loads a YAML, validates and return parsed as dict/list

80 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

load_from_file(filename: str, schema_name: str)
Loads a YAML file from given path, a wrapper to load()

7.11.8 Creating installer wizards with RKD

Wizard is a component designed to create comfortable installers, where user has to answer a few questions to get the
task done.

Concept

• User answers questions invoked by ask() method calls

• At the end the finish() is called, which acts as a commit, saves answers into .rkd/tmp-wizard.json by
default and into the .env file (depends on if to_env=true was specified)

• Next RKD task executed can read .rkd/tmp-wizard.json looking for answers, the answers placed in .env are
already loaded automatically as part of standard mechanism of environment variables support

Example Wizard

from rkd.core.api.inputoutput import Wizard

self is the TaskInterface instance, in Makefile.yaml it would be "this", in Python␣
→˓code it is "self"
Wizard(self)\

.ask('Service name', attribute='service_name', regexp='([A-Za-z0-9_]+)', default=
→˓'redis')\

.finish()

Service name [([A-Za-z0-9_]+)] [default: redis]:
-> redis

Example of application that is using Wizard to ask interactive questions

Using Wizard results internally

Wizard is designed to keep the data on the disk, so you can access it in any other task executed, but this is not mandatory.
You can skip committing changes to disk by not using finish() which is flushing data to json and to .env files.

Use wizard.answers to see all answers that would be put into json file, and wizard.to_env to browse all environ-
ment variables that would be set in .env if finish() would be used.

7.11. ADVANCED usage 81

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Example of loading stored values by other task

Wizard stores values into file and into .env file, so it can read it from file after it was stored there. This allows you to
separate Wizard questions into one RKD task, and the rest of logic/steps into other RKD tasks.

from rkd.core.api.inputoutput import Wizard

... assuming that previously the Wizard was completed by user and the finish() method␣
→˓was called ...

wizard = Wizard(self)
wizard.load_previously_stored_values()

print(wizard.answers, wizard.to_env)

API

class rkd.core.api.inputoutput.Wizard(task: TaskInterface, filename: str = 'tmp-wizard.json')

ask(title: str, attribute: str, regexp: str = '', to_env: bool = False, default: Optional[str] = None, choices: list
= [], secret: bool = False)→ rkd.core.api.inputoutput.Wizard
Asks user a question

Usage:

wizard = Wizard(self)
wizard.ask('In which year the Spanish social revolution has begun?',

attribute='year',
choices=['1936', '1910'])

wizard.finish()

finish()→ rkd.core.api.inputoutput.Wizard
Commit all pending changes into json and .env files

input(secret: bool = False)
(Internal) Extracted for unit testing to make testing easier

load_previously_stored_values()
Load previously saved values

7.11.9 Best practices

Do not use os.getenv()

The ExecutionContext is providing processed environment variables. Variables could be overridden on some levels eg.
in makefile.py - rkd.core.api.syntax.TaskAliasDeclaration can take a dict of environment variables to force
override.

Use context.get_env() instead.

82 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Define your environment variables

Note: Only in Python code

By using context.get_env() you are enforced to implement a TaskInterface.get_declared_envs() returning
a list of all environment variables used in your task code.

All defined environment variables will land in –help, which is considered as a task self-documentation.

Use sh() and exec() to invoke commands

Using raw subprocess will make your commands output invisible in logs, as the subprocess is writting directly to
stdout/stderr skipping sys.stdout and sys.stderr. The methods provided by RKD are buffering the output and making it
possible to save to both file and to console.

Do not print if you do not must, use io()

rkd.core.api.inputoutput.IO provides a standardized way of printing messages. The class itself distinct impor-
tance of messages, writing them to proper stdout/stderr and to log files.

print is also captured by IO, but should be used only eventually.

Use tasks expansion or pipelines instead of dynamic tasks creation in Makefile

Makefiles are not designed to execute logic outside tasks execution. As long as it is possible use compilation stage
to expand task into a group of tasks, see Task expansion pattern chapter of the documentation.

Standard way of tasks creation helps other people to understand your construction due to a common usage of a defined
pattern in our documentation. Second argument is that things defined using Task expansion pattern are possible to
package into a Python package.

Invoke RKD subtasks as a pipeline or tasks expansion

Invoking tasks in the middle of one of tasks code signals an architecture fault. Your tasks probably are having too many
responsibilities. To be SOLID split tasks into smaller pieces and create a pipeline or task expansion.

Don’t mix dependencies between subprojects - rethink project structure

RKD contexts are built at compilation stage, therefore it is possible that in subproject A you can use tasks from
subproject B

Solutions to avoid complex dependencies:

• Extract common things into base tasks accessible in the PYTHONPATH, or best in a separate package

• Create aggregated pipelines on top level, before the subprojects, e.g. on project level. This requires to cut
subprojects into smaller pieces to pilot the behavior from project level

Having complex dependencies in subprojects is again a signal of a invalid design.

7.11. ADVANCED usage 83

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Keep compilation and configuration stage fast

Compilation and configuration stages of every task are not intended to query databases, HTTP servers, to search re-
cursively for files or directories. All other tasks in project will be affected if at least one task compilation would be
slow.

Use configuration stage for validation

Configuration stage should be used for validation stage as it is executed for all tasks before first task is executed. Error
messages at early stage, not in the middle of execution are very helpful in practice, increases quality of the automation.

7.11.10 Process isolation and permissions changing with sudo

Alternatively called “forking” is a feature of RKD similar to Gradle’s JVM forking - the task can be run in a separate
Python’s process. This gives a possibility to run specific task as a specific user (eg. upgrade permissions to ROOT or
downgrade to regular user)

Mechanism

RKD uses serialization to transfer data between processes - a standard pickle library is used. Pickle has limitations
on what can be serialized - any inner-methods and lambdas cannot be returned by task.

To test if your task is compatible with running as a separate process simply add --become=USER-NAME to the com-
mandline of your task. If it will fail due to serialization issue, then you will be notified with a nice stacktrace.

Technically the mechanism works on the task executor level, it means that process isolation is independent of the
programming language as whole task’s execute() is ran in a separate process, even if task is declared in YAML and has
Bash steps.

Permissions changing with sudo

YAML syntax allows to define additional attribute become, that if defined then makes whole task to execute inside a
separate Python process ran with sudo.

Additionally the RKD commandline supports a per-task parameter --become

Future usage

The mechanism is universal, it can be possibly used to sandbox, or even to execute tasks remotely. Currently we do not
support such features but we do not say its impossible in the future.

7.11.11 Docker entrypoints under control

RKD has enough small footprint so that it can be used as an entrypoint in docker containers. There are a few features
that are making RKD very attractive to use in this role.

84 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Environment variables

Defined commandline --my-switch can have optionally overridden value with environment variable. In docker it can
help easily adjusting default values.

Task needs to create an explicit declaration of environment variable:

def get_declared_envs(self) -> Dict[str, ArgumentEnv]:
return {

'MY_SWITCH': ArgumentEnv(name='MY_SWITCH', switch='--switch-name', default=''),
}

def execute(self, ctx: ExecutionContext) -> bool:
this one will look for a switch value, if switch has default value, then it will␣

→˓look for an environment variable
ctx.get_arg_or_env('--my-switch')

Arguments propagation

When setting ENTRYPOINT ["rkd", ":entrypoint"] everything that will be passed as docker’s CMD will be
passed to rkd, so additional tasks and arguments can be appended.

Tasks customization

It is a good practice to split your entrypoint into multiple tasks executed one-by-one. This gives you a possibility
to create new Makefile in any place and modify RKD_PATH environment variable to add additional tasks or replace
existing. The RKD_PATH has always higher priority than current .rkd directory.

Possible options:

• Create a bind-mount volume with additional .rkd/makefile.yaml, add .rkd/makefile.yaml into container
and set RKD_PATH to point to .rkd directory

• Create new docker image having original in FROM, add .rkd/makefile.yaml into container and set RKD_PATH
to point to .rkd directory

Massive files rendering with JINJA2

:j2:directory-to-directory is a specially designed task to render JINJA2 templates recursively preserving a
directory structure. You can create for example templates/etc/nginx/nginx.conf.j2 and render ./templates/
etc into /etc with all files being copied on the fly.

All jinja2 templates will have access to environment variables - with templating syntax you can define very
advanced configuration files

7.11. ADVANCED usage 85

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Privileges dropping

Often in entrypoint there are cache/uploads permissions corrected, so the root user is used. To migrate the application,
to run the webserver the privileges could be dropped.

Solutions:

• In YAML syntax each task have a possible field to use: become: user-name-here

• In Python class TaskInterface has method get_become_as() that should return empty string or a username to
use sudo with

• In commandline there is a switch --become=user-name-here that can be used with most of the tasks

7.11.12 Testing with PyTest

rkd.core.api.testing provides methods for running tasks with output capturing, a well as mocking RKD classes
for unit testing of your task methods. To use our API just extend one of base classes.

Example: Running a task on a fully featured RKD executor

#!/usr/bin/env python3

import os
from rkd.core.api.testing import FunctionalTestingCase

SCRIPT_DIR_PATH = os.path.dirname(os.path.realpath(__file__))

class TestFunctional(FunctionalTestingCase):
"""
Functional tests case of the whole application.
Runs application like from the shell, captures output and performs assertions on the␣

→˓results.
"""

def test_tasks_listing(self):
""" :tasks """

full_output, exit_code = self.run_and_capture_output([':tasks'])

self.assertIn(' >> Executing :tasks', full_output)
self.assertIn('[global]', full_output)
self.assertIn(':version', full_output)
self.assertIn('succeed.', full_output)
self.assertEqual(0, exit_code)

86 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Example: Mocking RKD-specific dependencies in TaskInterface

from rkd.core.api.inputoutput import BufferedSystemIO
from rkd.core.api.testing import FunctionalTestingCase

...

class SomeTestCase(FunctionalTestingCase):

...

def test_something_important(self):
task = LineInFileTask() # put your task class there
io = BufferedSystemIO()

BasicTestingCase.satisfy_task_dependencies(task, io=io)

self.assertEqual('something', task.some_method())

API

class rkd.core.api.testing.BasicTestingCase(methodName='runTest')

Provides minimum of:

• Doing backup of environment and cwd

• Methods for mocking task dependencies (RKD-specific like ExecutionContext)

environment(environ: dict)
Mocks environment

Example usage:

with self.environment({'RKD_PATH': SCRIPT_DIR_PATH + '/../docs/examples/env-
→˓in-yaml/.rkd'}):
code there

Parameters environ –

Returns

static list_to_str(in_list: list)→ List[str]
Execute __str__ on each list element, and replace element with the result

static mock_execution_context(task: rkd.core.api.contract.TaskInterface, args: Optional[Dict[str,
Union[str, bool]]] = None, env: Optional[Dict[str, str]] = None,
defined_args: Optional[Dict[str, dict]] = None)→
rkd.core.api.contract.ExecutionContext

Prepares a simplified rkd.core.api.contract.ExecutionContext instance

Parameters

• task –

• args –

7.11. ADVANCED usage 87

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

• env –

• defined_args –

Returns

static satisfy_task_dependencies(task: rkd.core.api.contract.TaskInterface, io:
Optional[rkd.core.api.inputoutput.IO] = None)→
rkd.core.api.contract.TaskInterface

Inserts required dependencies to your task that implements rkd.core.api.contract.TaskInterface

Parameters

• task –

• io –

Returns

setUp()→ None
Hook method for setting up the test fixture before exercising it.

tearDown()→ None
Hook method for deconstructing the test fixture after testing it.

class rkd.core.api.testing.FunctionalTestingCase(methodName='runTest')
Provides methods for running RKD task or multiple tasks with output and exit code capturing. Inherits Output-
CapturingSafeTestCase.

execute_mocked_task_and_get_output(task: rkd.core.api.contract.TaskInterface, args=None,
env=None)→ str

Run a single task, capturing it’s output in a simplified way. There is no whole RKD bootstrapped in this
operation.

Parameters

• task (TaskInterface) –

• args (dict) –

• env (dict) –

Returns

classmethod filter_out_task_events_from_log(out: str)
Produces an array of events unformatted

[
"Executing :sh -c echo 'Rocker' [part of :example]",
"Executing :sh -c echo 'Kropotkin' [part of :example]",
'Executing :sh -c echo "The Conquest of Bread"; exit 1 [part of :example]',
'Retrying :sh -c echo "The Conquest of Bread"; exit 1 [part of :example]',
'Executing :sh -c exit 0 ',
'Executing :sh -c echo "Modern Science and Anarchism"; [part of :example]'

]

Parameters out –

Returns

run_and_capture_output(argv: list, verbose: bool = False)→ Tuple[str, int]
Run task(s) and capture output + exit code. Whole RKD from scratch will be bootstrapped there.

88 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Example usage: full_output, exit_code = self.run_and_capture_output([‘:tasks’])

Parameters

• argv (list) – List of tasks, arguments, commandline switches

• verbose (bool) – Print all output also to stdout

Returns

with_temporary_workspace_containing(files: Dict[str, str])
Creates a temporary directory as a workspace and fills up with files specified in “file” parameter

Parameters files – Dict of [filename: contents to write to a file]

Returns

class rkd.core.api.testing.OutputCapturingSafeTestCase(methodName='runTest')
Provides hooks for keeping stdout/stderr immutable between tests.

setUp()→ None
Hook method for setting up the test fixture before exercising it.

tearDown()→ None
Hook method for deconstructing the test fixture after testing it.

7.11.13 org.riotkit.rkd/yaml/v1 schema

Tip: Import this schema in your IDE for better static analysis of Makefiles written in YAML

YAML syntax marked with version org.riotkit.rkd/yaml/v1 is validated using following schema:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"required": ["version"],
"properties": {

"version": {
"type": "string",
"minLength": 5

},
"imports": {

"type": "array",
"minItems": 0,
"items": {

"$ref": "#/definitions/import"
}

},
"tasks": {

"type": "object",
"minItems": 0,
"additionalProperties": {

"$ref": "#/definitions/task"
}

},
(continues on next page)

7.11. ADVANCED usage 89

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

"environment": {
"type": "object",
"minItems": 0

},
"env_files": {

"type": "array"
}

},

"definitions": {
"task": {

"type": "object",
"properties": {

"extends": {
"type": "string"

},

"description": {
"type": "string"

},

"arguments": {
"type": "object",
"additionalProperties": {

"$ref": "#/definitions/task-argument"
},
"minItems": 0

},

"steps": {
"type": ["array", "string"],
"minItems": 0

},

"environment": {
"type": "object",
"minItems": 0

},

"env_files": {
"type": "array"

},

"execute": {
"type": "string"

},

"execute@without_parent": {
"type": "string"

},

"execute@after_parent": {

(continues on next page)

90 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

"type": "string"
},

"configure": {
"type": "string"

},

"configure@without_parent": {
"type": "string"

},

"configure@after_parent": {
"type": "string"

},

"inner_execute": {
"type": "string"

},

"inner_execute@without_parent": {
"type": "string"

},

"inner_execute@after_parent": {
"type": "string"

}
}

},
"task-argument": {

"type": "object",
"properties": {

"help": {
"type": "string"

},
"required": {

"type": "boolean"
},
"action": {

"type": "string"
},
"metavar": {

"type": "string"
},
"type": {

"type": "string"
},
"nargs": {

"type": "string"
},
"default": {

"type": "string"
},

(continues on next page)

7.11. ADVANCED usage 91

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

"const": {
"type": "string"

},
"choices": {

"type": "array"
},
"dest": {

"type": "string"
}

}
},
"import": {

"type": "string"
}

}
}

7.12 RKD Tech Specification

7.12.1 RTS-1: Extendable tasks

Abstract

Most of the existing build tools like GNU Make, SCons, Meson in opinion of RKD developers does not have enough
good possibilities to share tasks across different projects, which means those tools are not scaling well.

Motivation

In order to provide a perfect DevOps tool that will allow sharing the code of universal mechanisms between projects,
even organizations this RKD Tech Specification was designed.

Inspired how it looks in Gradle we decided to create a simplified DevOps tool that will be universal, will allow to install
any task set as a Python package and then use it to manage databases, servers, build projects, generate configs and all
other things that could be automated, parametrized.

Rationale

Common practice is to extract complex and universal mechanisms to separate packages, in our case it is a Python
package. Packages can be shared across projects, even organizations, using already good and known mechanism -
PyPI/PIP and Virtual Environment.

Inside project structure an already prepared mechanism can be imported from an installed package, then local project
tasks can be created with already prepared configuration that is specific to the local project.

92 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Vocabulary

• Task: Task that actually runs, can be invoked and will produce result.

• Base Task: Task that acts like a template, other Task needs to be created from it and properly configured.

• Decorator: Marks an extended method that it should be executed instead of parent method, or before parent
method, or after parent method. No decorator means replacing parent method. Internally in RKD Core called
also Markers.

Base tasks vs Customizations

Base Tasks are possible to be defined ONLY as Python classes inside Python modules (modules can be also local). The
actual Tasks, the Customizations are defined in a simplified Python syntax or in YAML document syntax, those cannot
be extended again. Regular Tasks are also possible to be written in pure Python as classes, there are no limits.

Example of a Task that extends a Base Task, which means it is a Customization of a Base Task:

version: org.riotkit.rkd/yaml/v1
imports:

- rkd.php.script.PhpScriptTask
tasks:

:yaml:test:php:
extends: rkd.php.script.PhpScriptTask
@before_parent is a Decorator, there could be only one decorator used
configure@before_parent: |

self.version = '7.2-alpine'
inner_execute@after_parent: |

print('IM AFTER PARENT')
return True

input: |
this is a PHP language
var_dump(getcwd());
var_dump(phpversion());

To create project-specific Base Task that extend other Base Task there is a requirement to define it as a Python class,
and do it in a Pythonic way.

Example of a Base Task that extends other Base Task:

import os
from typing import Optional

from rkd.core.execution.lifecycle import ConfigurationLifecycleEvent
from rkd.core.standardlib.docker import RunInContainerBaseTask

class PhpScriptTask(RunInContainerBaseTask):
"""
Execute a PHP code (using a docker container)
Can be extended - this is a base task.

Inherits settings from `RunInContainerBaseTask`.

Configuration:
(continues on next page)

7.12. RKD Tech Specification 93

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

script: Path to script to load instead of stdin (could be a relative path)
version: PHP version. Leave None to use default 8.0-alpine version

"""

script: Optional[str]
version: Optional[str]

def __init__(self):
super().__init__()
self.user = 'www-data'
self.entrypoint = 'sleep'
self.command = '9999999'
self.script = None
self.version = None

def configure(self, event: ConfigurationLifecycleEvent) -> None:
please note: there is parent method called - RunInContainerBaseTask.

→˓configure(event)
super().configure(event)

self.docker_image = '{image}:{version}'.format(
image=event.ctx.get_arg_or_env('--image'),
version=self.version if self.version else event.ctx.get_arg_or_env('--php')

)

self.mount(local=os.getcwd(), remote=os.getcwd())

...

Syntax

There exists actually three available syntax styles.

1. Python Class: Classic syntax

Classic syntax has no limits, it’s main purpose is to define Base Tasks, that could be extended later due to its native
construct could be packaged as PyPI/PIP package.

import os
from argparse import ArgumentParser
from rkd.core.api.syntax import TaskDeclaration
from rkd.core.api.contract import TaskInterface, ExecutionContext

class GetEnvTask(TaskInterface):
"""Gets environment variable value"""

def get_name(self) -> str:
return ':get'

(continues on next page)

94 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

(continued from previous page)

def get_group_name(self) -> str:
return ':env'

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument('--name', '-e', help='Environment variable name',␣

→˓required=True)

def execute(self, context: ExecutionContext) -> bool:
self.io().out(os.getenv(context.get_arg('--name'), ''))

return True

IMPORTS = [
TaskDeclaration(GetEnvTask())

]

2. Simplified Python syntax

Allows writing Tasks that extends Base Tasks in a very easy and short manner.

from rkd.core.api.contract import ExecutionContext
from rkd.core.api.syntax import ExtendedTaskDeclaration
from rkd.core.api.decorators import before_parent, without_parent, after_parent, extends
from rkd.core.execution.lifecycle import ConfigurationLifecycleEvent
from rkd.php.script import PhpScriptTask

@extends(PhpScriptTask)
def MyTask():

@without_parent
def configure(task: PhpScriptTask, event: ConfigurationLifecycleEvent):

task.version = '7.2-alpine'

def inner_execute(task: PhpScriptTask, ctx: ExecutionContext):
print('IM AFTER PARENT')
return True

def stdin():
return """

var_dump(getcwd());
var_dump(phpversion());

"""

return [configure, inner_execute, stdin]

IMPORTS = [
ExtendedTaskDeclaration(name=':php', task=MyTask)

]

7.12. RKD Tech Specification 95

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

3. Document/YAML syntax

Has similar purpose as Simplified Python syntax, but should be simpler for non-programmers like System Ad-
ministrators, or just for people that likes YAML declarations.

version: org.riotkit.rkd/yaml/v1
imports:

- rkd.php.script.PhpScriptTask
tasks:

:yaml:test:php:
extends: rkd.php.script.PhpScriptTask
configure@before_parent: |

self.version = '7.2-alpine'
inner_execute@after_parent: |

print('IM AFTER PARENT')
return True

input: |
var_dump(getcwd());
var_dump(phpversion());

defining classic shell tasks is easiest with YAML syntax
"bash" and "python" can be also replaced with a full package name + class that␣

→˓implements executing code in other language e.g. rkd.php.script.PhpScriptTask
:yaml:test:multi:

steps:
- |

#!bash
echo "Hello world from Bash"

- |
#!python
print("Hello from Python")

- ps aux
- ls -la

Execute and Inner Execute concept

• def execute(ctx: ExecutionContext) -> bool is a main method that performs action of a task, as a
result a boolean should be returned.

• def inner_execute(ctx: ExecutionContext) -> bool is a method that OPTIONALLY can be called
by implementation of execute() method, to perform some e.g., transactional task

Base Tasks can implement a execute() and leave a possibility for a Customizations by calling inner_execute(ctx)
from the inside of execute(), but not every Base Task may implement this. You need to carefully read docs for given
Base Task.

What are the cases for inner_execute? - execute() launches a docker container, invokes inner_execute(), then
removes the container. This allows to use the container from inside of inner_execute(ctx) method - execute()
prepares required files, then invokes inner_execute() to perform some user-defined action, at the end cleans the
workspace

96 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

Table of method names

Despite three different syntax styles, there are slight differences the developer/ops needs to be aware of.

Simplified Python Python Class YAML Description
get_steps(task: Multi-
StepLanguageAgnostic-
Task) -> List[str]:

get_steps steps: [“”] List of steps in any lan-
guage (only if extending
MultiStep LanguageAg-
nosticTask)

stdin() • input: “” Standard input text

@extends(ClassName)
decorator on a main
method

ClassName(BaseClass) extends: pack-
age.name.ClassName

Which Base Task should
be extended

execute(task: BaseClass-
NameTask, ctx: Execu-
tionContext):

execute(self, ctx: Execu-
tionContext)

execute: “” Python code to execute

inner_execute(task: Base-
ClassNameTask, ctx: Ex-
ecutionContext):

inner_execute(self, ctx:
ExecutionContext)

inner_execute: “” Python code to execute in-
side inner_execute (if im-
plemented by Base Task)

compile(task: BaseClass-
NameTask, event: Compi-
lationLifecycleEvent):

compile(self, event: Com-
pilationLifecycleEvent):

None Python code to execute
during Context compila-
tion process

configure(task: Base-
ClassNameTask, event:
ConfigurationLifecy-
cleEvent):

configure(self, event:
ConfigurationLifecy-
cleEvent):

configure: “” Python code to execute
during Task configuration
process

get_description() get_description(self) description: “” Task description
get_group_name() get_group_name() None Group name
internal=True in TaskDec-
laration

internal=True in TaskDec-
laration

internal: False Is task considered inter-
nal? (hidden on :tasks list)

become in TaskDecla-
ration (or commandline
switch)

become in TaskDecla-
ration (or commandline
switch)

become: root Change user for task exe-
cution time

workdir in TaskDeclara-
tion

workdir in TaskDeclara-
tion

workdir: /some/path Change working directory
for task execution time

configure_argparse(task:
BaseClassNameTask,
parser: ArgumentParser)

configure_argparse(self,
parser: ArgumentParser)

arguments: {} Configure arg-
parse.ArgumentParser
object

7.12. RKD Tech Specification 97

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

7.13 Development

RKD due to its technical and elastic nature is very abstract inside, therefore core concepts are explained in this chapter.

7.13.1 Input/Output

Every Task has its own instance of IO. Task compilation, context preparation stages are using SystemIO, so the IO
configuration is having settings defined with commandline switches before first task.

Reasons:

• Each task can have different logging level

• Each task can log to different file (even cannot write to same file)

• Task has separate IO settings than RKD global UI

• –no-ui before first task disables RKD interface messages like Successfully executed 2 tasks but keeps interface
produced by Task eg. >> chown www-data:www-data /tmp/script.php

• –silent before first task disables ALL interfaces both RKD and produced by Task. Only necessary messages are
printed

Global logging level - before first task examples

./rkdw --no-ui :first-task :second-task

defines log level on very early stage, before arguments parsing. Can be set to any␣
→˓level including debug, info, warning, error
"internal" is a level that contains internal RKD core debugging messages. Warning:␣
→˓There could be a lot of messages
use "debug" to debug your tasks
RKD_SYS_LOG_LEVEL=internal ./rkdw :first-task :second-task

Logging levels:

• internal: Includes RKD core internal messages

• debug: Includes task-related debugging messages

• info: User info messages

• warning: Warnings

• error: Errors

• fatal: Fatal errors

7.13.2 Lifecycle entities

Internally RKD has three types of objects that are used across the application - Task creation, Task usage declaration,
Task execution scheduling.

98 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

1) Task Creation

TaskInterface implementations are considered to provide importable Tasks to be used in any automation project.

Example: I have PostgreSQLRunTask and I import it as :pgsql:start

...

class RenderDirectoryTask(TaskInterface):
"""Renders *.j2 files recursively in a directory to other directory"""

def get_name(self) -> str:
return ':directory-to-directory'

def get_group_name(self) -> str:
return ':j2'

def execute(self, context: ExecutionContext) -> bool:
...

Tasks should be defined mainly as part of installable libraries via PyPI, but could be also defined in local repository.

2) Task usage declaration - importing & preconfiguring Tasks in project code

TaskDeclaration declares that imported TaskInterface implementation would be used in our automation project
under some name, with some environment variables, custom workspace and other little customizations that does not
involve changing the code of imported Task.

Pipeline, PipelineTask and PipelineBlock defines complete Pipelines, with error handling, notifications, list of
Tasks to execute.

That’s called static declaration of reproducible usage. Tasks are imported into a project defined in code, each
Task is preconfigured and ready to be used in reproducible way.

from rkd.core.api.syntax import Pipeline, PipelineTask as Task, PipelineBlock as Block,␣
→˓TaskDeclaration
from rkd.core.standardlib.core import DummyTask
from rkd.core.standardlib.shell import ShellCommandTask

IMPORTS = [
TaskDeclaration(ShellCommandTask(), internal=True)

]

PIPELINES = [
Pipeline(

name=':example',
to_execute=[

Block(rescue='...', tasks=[
Task('...'),

]),
Task('...'),

]
)

]

7.13. Development 99

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

3) Runtime Task scheduling

Imported Tasks and declared for usage in a project are processed, when executed. This later stage is invisible to end-user
and is performed internally on runtime, the entities are not known to the user.

Internally RKD must wrap any TaskDeclaration and process Pipeline into lower-level entities on first stage -
resolving & compilation stage.

TaskDeclaration is wrapped by DeclarationScheduledToRun that mixes environment, arguments and other op-
tions declared in code with everything that exists during execution that takes place now.

Pipeline is translated into GroupDeclaration and associated ArgumentBlock objects which are no longer strings
like :db:start --listen=5432, but are separate TaskDeclaration objects. There are all @rescue and @error
modifiers resolved into objects, so everything is calculated on very early stage and therefore can be validated without
disrupting later execution by any simple errors.

Each TaskDeclaration in Pipeline is wrapped into DeclarationBelongingToPipeline which acts very similar
to DeclarationScheduledToRun, but it was named differently to distinct between something that was declared in the
code (DeclarationBelongingToPipeline) from something that contains a set of information how the user invoked
the command from shell (DeclarationScheduledToRun)

7.13.3 Task lifetime stages

1) Construction

Tasks are created and imported into the ApplicationContext. Every .rkd directory context is parsed into
ApplicationContext, then all contexts are merged into an unified ApplicationContext.

2) Compilation

Unified ApplicationContext is compiled, compilation does two things:

1. Resolving all Pipelines into Groups of resolved Tasks

2. Executing compile() on all defined Tasks in ApplicationContext, regardless if they are called

3) Configuration

configure() method is triggered on each Task that is scheduled to be executed.

4) Execution

execute() method is triggered on each Task that is scheduled to be executed.

100 Chapter 7. Keep learning

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

5) Teardown

To be done. Not implemented yet.

7.13. Development 101

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

102 Chapter 7. Keep learning

INDEX

A
add() (rkd.core.standardlib.io.ArchivePackagingBaseTask

method), 53
add_file_to_copy() (rkd.core.standardlib.docker.RunInContainerBaseTask

method), 55
add_output_processor()

(rkd.core.api.inputoutput.IO method), 74
ArchivePackagingBaseTask (class in

rkd.core.standardlib.io), 52
ask() (rkd.core.api.inputoutput.Wizard method), 82
assign_temporary_file()

(rkd.core.api.temp.TempManager method),
76

B
BasicTestingCase (class in rkd.core.api.testing), 77, 87

C
CallableTask (class in rkd.core.standardlib), 43
can_mutate_globals()

(rkd.core.api.contract.ExecutionContext
method), 73

capture_descriptors() (rkd.core.api.inputoutput.IO
method), 75

compile() (rkd.core.api.contract.ExtendableTaskInterface
method), 59

configure() (rkd.core.api.contract.ExtendableTaskInterface
method), 59

configure() (rkd.php.script.PhpScriptTask method), 49
configure_argparse()

(rkd.core.api.contract.TaskInterface method),
58, 71

configure_argparse()
(rkd.core.standardlib.CallableTask method), 43

configure_argparse()
(rkd.core.standardlib.CreateStructureTask
method), 44

configure_argparse()
(rkd.core.standardlib.io.ArchivePackagingBaseTask
method), 53

configure_argparse() (rkd.php.script.PhpScriptTask
method), 49

copy_internal_dependencies()
(rkd.core.api.contract.TaskInterface method),
71

copy_to_container()
(rkd.core.standardlib.docker.RunInContainerBaseTask
method), 55

CreateStructureTask (class in rkd.core.standardlib),
44

critical() (rkd.core.api.inputoutput.IO method), 75

D
debug() (rkd.core.api.inputoutput.IO method), 75

E
environment() (rkd.core.api.testing.BasicTestingCase

method), 77, 87
err() (rkd.core.api.inputoutput.IO method), 75
errln() (rkd.core.api.inputoutput.IO method), 75
error() (rkd.core.api.inputoutput.IO method), 75
error_msg() (rkd.core.api.inputoutput.IO method), 75
exec() (rkd.core.api.contract.TaskInterface method), 71
execute() (rkd.core.api.contract.ExtendableTaskInterface

method), 59
execute() (rkd.core.api.contract.TaskInterface

method), 71
execute() (rkd.core.standardlib.CallableTask method),

43
execute() (rkd.core.standardlib.CreateStructureTask

method), 44
execute() (rkd.core.standardlib.docker.RunInContainerBaseTask

method), 55
execute() (rkd.core.standardlib.io.ArchivePackagingBaseTask

method), 53
execute_mocked_task_and_get_output()

(rkd.core.api.testing.FunctionalTestingCase
method), 78, 88

ExecutionContext (class in rkd.core.api.contract), 73
ExtendableTaskInterface (class in

rkd.core.api.contract), 59, 60
extends_task() (rkd.core.api.contract.TaskInterface

method), 71

103

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

F
FileRendererTask (class in rkd.core.standardlib.jinja),

50
filter_out_task_events_from_log()

(rkd.core.api.testing.FunctionalTestingCase
class method), 78, 88

finally_clean_up() (rkd.core.api.temp.TempManager
method), 76

find_path_by_name()
(rkd.core.yaml_parser.YamlFileLoader
method), 80

finish() (rkd.core.api.inputoutput.Wizard method), 82
format_table() (rkd.core.api.inputoutput.IO static

method), 75
format_task_name() (rkd.core.api.contract.TaskInterface

method), 71
FunctionalTestingCase (class in rkd.core.api.testing),

78, 88

G
get_arg() (rkd.core.api.contract.ExecutionContext

method), 73
get_arg_or_env() (rkd.core.api.contract.ExecutionContext

method), 73
get_become_as() (rkd.core.api.contract.TaskInterface

method), 71
get_become_as() (rkd.core.standardlib.CallableTask

method), 43
get_declared_envs()

(rkd.core.api.contract.TaskInterface class
method), 59, 71

get_declared_envs()
(rkd.core.standardlib.CallableTask method), 43

get_env() (rkd.core.api.contract.ExecutionContext
method), 74

get_full_name() (rkd.core.api.contract.TaskInterface
method), 72

get_group_name() (rkd.core.api.contract.TaskInterface
method), 59, 72

get_group_name() (rkd.core.standardlib.CallableTask
method), 43

get_group_name() (rkd.core.standardlib.CreateStructureTask
method), 44

get_name() (rkd.core.api.contract.TaskInterface
method), 59, 72

get_name() (rkd.core.standardlib.CallableTask
method), 44

get_name() (rkd.core.standardlib.CreateStructureTask
method), 44

get_patterns_to_add_to_gitignore()
(rkd.core.standardlib.CreateStructureTask
method), 44

H
h1() (rkd.core.api.inputoutput.IO method), 75
h2() (rkd.core.api.inputoutput.IO method), 75
h3() (rkd.core.api.inputoutput.IO method), 75
h4() (rkd.core.api.inputoutput.IO method), 75

I
in_container() (rkd.core.standardlib.docker.RunInContainerBaseTask

method), 55
info() (rkd.core.api.inputoutput.IO method), 75
info_msg() (rkd.core.api.inputoutput.IO method), 75
inner_execute() (rkd.core.api.contract.ExtendableTaskInterface

method), 59
inner_execute() (rkd.php.script.PhpScriptTask

method), 49
input() (rkd.core.api.inputoutput.Wizard method), 82
internal() (rkd.core.api.inputoutput.IO method), 75
internal_lifecycle() (rkd.core.api.inputoutput.IO

method), 75
IO (class in rkd.core.api.inputoutput), 74
io() (rkd.core.api.contract.ExtendableTaskInterface

method), 60
io() (rkd.core.api.contract.TaskInterface method), 72
is_silent() (rkd.core.api.inputoutput.IO method), 75

J
Jinja2Language (class in rkd.core.standardlib.jinja), 51

L
list_to_str() (rkd.core.api.testing.BasicTestingCase

static method), 77, 87
load() (rkd.core.yaml_parser.YamlFileLoader method),

80
load_from_file() (rkd.core.yaml_parser.YamlFileLoader

method), 81
load_previously_stored_values()

(rkd.core.api.inputoutput.Wizard method),
82

M
mock_execution_context()

(rkd.core.api.testing.BasicTestingCase static
method), 77, 87

mount() (rkd.core.standardlib.docker.RunInContainerBaseTask
method), 55

MultiStepLanguageAgnosticTask (class in
rkd.core.standardlib.syntax), 41

O
on_creating_venv() (rkd.core.standardlib.CreateStructureTask

method), 44
on_files_copy() (rkd.core.standardlib.CreateStructureTask

method), 44

104 Index

Riotkit-Do: Universal automation (DevOps) tool for elastic, shareable tasks and pipelines, Release
0.0.35

on_git_add() (rkd.core.standardlib.CreateStructureTask
method), 45

on_requirements_txt_write()
(rkd.core.standardlib.CreateStructureTask
method), 45

on_startup() (rkd.core.standardlib.CreateStructureTask
method), 45

opt_errln() (rkd.core.api.inputoutput.IO method), 75
opt_out() (rkd.core.api.inputoutput.IO method), 75
opt_outln() (rkd.core.api.inputoutput.IO method), 76
out() (rkd.core.api.inputoutput.IO method), 76
outln() (rkd.core.api.inputoutput.IO method), 76
OutputCapturingSafeTestCase (class in

rkd.core.api.testing), 79, 89

P
parse_import_as_type()

(rkd.core.api.parsing.SyntaxParsing static
method), 77

parse_imports_by_list_of_classes()
(rkd.core.api.parsing.SyntaxParsing class
method), 77

PhpLanguage (class in rkd.php.script), 49
PhpScriptTask (class in rkd.php.script), 48
Pipeline (class in rkd.core.api.syntax), 37
PipelineBlock (class in rkd.core.api.syntax), 37
PipelineTask (class in rkd.core.api.syntax), 37
print_group() (rkd.core.api.inputoutput.IO method),

76
print_line() (rkd.core.api.inputoutput.IO method), 76
print_opt_line() (rkd.core.api.inputoutput.IO

method), 76
print_separator() (rkd.core.api.inputoutput.IO

method), 76
print_success_msg()

(rkd.core.standardlib.CreateStructureTask
method), 45

py() (rkd.core.api.contract.ExtendableTaskInterface
method), 60

py() (rkd.core.api.contract.TaskInterface method), 72

R
rkd() (rkd.core.api.contract.ExtendableTaskInterface

method), 60
rkd() (rkd.core.api.contract.TaskInterface method), 72
run_and_capture_output()

(rkd.core.api.testing.FunctionalTestingCase
method), 79, 88

RunInContainerBaseTask (class in
rkd.core.standardlib.docker), 54

S
satisfy_task_dependencies()

(rkd.core.api.testing.BasicTestingCase static

method), 78, 88
setUp() (rkd.core.api.testing.BasicTestingCase method),

78, 88
setUp() (rkd.core.api.testing.OutputCapturingSafeTestCase

method), 79, 89
sh() (rkd.core.api.contract.ExtendableTaskInterface

method), 60
sh() (rkd.core.api.contract.TaskInterface method), 72
should_fork() (rkd.core.api.contract.TaskInterface

method), 72
silent_sh() (rkd.core.api.contract.TaskInterface

method), 72
success_msg() (rkd.core.api.inputoutput.IO method),

76
SyntaxParsing (class in rkd.core.api.parsing), 77

T
TaskAliasDeclaration (class in rkd.core.api.syntax),

73
TaskDeclaration (class in rkd.core.api.syntax), 73
TaskInterface (class in rkd.core.api.contract), 58, 71
tearDown() (rkd.core.api.testing.BasicTestingCase

method), 78, 88
tearDown() (rkd.core.api.testing.OutputCapturingSafeTestCase

method), 79, 89
TempManager (class in rkd.core.api.temp), 76

W
warn() (rkd.core.api.inputoutput.IO method), 76
warn_msg() (rkd.core.api.inputoutput.IO method), 76
with_temporary_workspace_containing()

(rkd.core.api.testing.FunctionalTestingCase
method), 79, 89

Wizard (class in rkd.core.api.inputoutput), 82

Y
YamlFileLoader (class in rkd.core.yaml_parser), 80

Index 105

	Example use cases
	Install RKD
	Getting started in freshly created structure
	Create your first task with Getting started
	Check how to use commandline to run tasks in RKD with Commandline usage
	See how to import existing tasks to your Makefile with Importing tasks page
	Keep learning
	Getting started
	Where to place files
	Tutorial
	Environment variables
	Arguments parsing
	Defining tasks in Python code
	YAML syntax reference

	Commandline usage
	Tasks arguments usage in shell and in scripts
	Arguments

	Advanced: Blocks for error handling

	Syntax
	YAML
	Simplified Python
	Classic Python
	Syntax reference

	Importing tasks
	1) Install a package
	2) In YAML syntax
	2) In Python syntax
	3) Inline syntax
	Ready to go? Check Built-in tasks that you can import in your Makefile

	Extending tasks
	Introduction
	Practical tips
	Decorators
	Example #1: Using inner_execute
	Example #2: Advanced - extending a task that extends other task
	Syntax reference

	Pipelines
	Basic pipeline
	@retry
	@retry-block
	@error
	@rescue
	Order of modifiers execution
	Pipeline in Pipeline
	Pipeline in Pipeline - how modifiers behave
	Python syntax reference (API)

	Project structure
	Enabling subprojects

	Built-in tasks
	Shell
	:sh
	:exec
	BaseShellCommandWithArgumentParsingTask
	MultiStepLanguageAgnosticTask

	Technical/Core
	:tasks
	:version
	CallableTask
	:rkd:create-structure
	:file:line-in-file

	Python
	:py:publish
	:py:build
	:py:install
	:py:clean
	:py:unittest

	PHP
	PhpScriptTask
	PhpLanguage

	ENV
	:env:get
	:env:set

	JINJA
	:j2:render
	Jinja2Language
	:j2:directory-to-directory

	IO
	ArchivePackagingBaseTask

	Docker
	RunInContainerBaseTask

	Working with environment variables
	1) Dotenv
	2) Document scope
	3) Task scope
	4) Operating system scope
	Priority

	Writing reusable tasks
	Importing packages
	Package index
	Task construction
	Basic example of how the Task looks
	Basic configuration methods to implement
	Basic action methods
	Additional methods that can be called inside execute() and inner_execute()

	ADVANCED usage
	Troubleshooting
	Loading priority
	Environment variables loading order from .env and from .rkd
	Environment variables loading order in YAML syntax
	Order of loading of makefile files in same .rkd directory
	Paths and inheritance
	Tasks execution

	Tasks development - more examples
	Option 1) Simplest - in YAML syntax
	Option 2) For Python developers - task as a class
	Option 3) Quick and elastic way in Python code of Makefile.py
	Please check Tasks API for interfaces description

	Global environment variables
	RKD_WHITELIST_GROUPS
	RKD_ALIAS_GROUPS
	RKD_UI
	RKD_AUDIT_SESSION_LOG
	RKD_BIN
	RKD_DIST_NAME
	RKD_SYS_LOG_LEVEL
	RKD_IMPORTS
	RKD_DEPTH

	Custom distribution
	Example
	Read more in Global environment variables
	Customizing RKD resource files

	Tasks API
	Each task must implement a TaskInterface (directly, or through a Base Task)
	To include a task, wrap it in a declaration
	To create an alias for task or multiple tasks
	Execution context provides parsed shell arguments and environment variables
	Interaction with input and output
	Storing temporary files
	Parsing RKD syntax
	Testing

	Working with YAML files
	YAML parsing API
	FAQ
	API

	Creating installer wizards with RKD
	Concept
	Example Wizard
	Using Wizard results internally
	Example of loading stored values by other task
	API

	Best practices
	Do not use os.getenv()
	Define your environment variables
	Use sh() and exec() to invoke commands
	Do not print if you do not must, use io()
	Use tasks expansion or pipelines instead of dynamic tasks creation in Makefile
	Invoke RKD subtasks as a pipeline or tasks expansion
	Don’t mix dependencies between subprojects - rethink project structure
	Keep compilation and configuration stage fast
	Use configuration stage for validation

	Process isolation and permissions changing with sudo
	Mechanism
	Permissions changing with sudo
	Future usage

	Docker entrypoints under control
	Environment variables
	Arguments propagation
	Tasks customization
	Massive files rendering with JINJA2
	Privileges dropping

	Testing with PyTest
	Example: Running a task on a fully featured RKD executor
	Example: Mocking RKD-specific dependencies in TaskInterface
	API

	org.riotkit.rkd/yaml/v1 schema

	RKD Tech Specification
	RTS-1: Extendable tasks
	Abstract
	Motivation
	Rationale
	Vocabulary
	Base tasks vs Customizations
	Syntax
	Execute and Inner Execute concept
	Table of method names

	Development
	Input/Output
	Lifecycle entities
	1) Task Creation
	2) Task usage declaration - importing & preconfiguring Tasks in project code
	3) Runtime Task scheduling

	Task lifetime stages
	1) Construction
	2) Compilation
	3) Configuration
	4) Execution
	5) Teardown

	Index

