RiotKit Do Documentation
Release 1

Wolnosciowiec Team

Jul 13, 2020

Contents:

Example use cases 3
Quick start 5
Getting started with RKD 7
Read more 9
41 Basics. . ..o e e 10
4.1.1 Tasks arguments usage in shell and in scripts 10

4.1.2 YAML syntax - makefile.yaml L o 11

4.1.3 What’s loaded first? See Paths and inheritance 12

42 Tasks . .. e 12
421 Shell o e 12
4211 sh oo e e 12

4212 BXEC .+ v i e e e e e e e e e e e e e 13

4.2.1.3 Class to import: BaseShellCommandWithArgumentParsingTask 13

422 Technical/Core e 14
4221 nit. .o e e e e e 14

4222 tasks . ..o 14

4223 VErSIONo e e e e e e 14

4224 CallableTask o o e 15

4225 akdicreate-structureo oL e e e e e e e e e 15

4226 filedine-in-file 15

423 Docker ... e 16
4231 dockeritago .o e 16

4232 dockertpusho 16

424 Python. 16
4241 cpy:publish . . L. o e e e e 17

4242 cpybuild Lo oL e 17

4243 cpydnstall L. e 18

4244 cpy:clean ... oL e 18

4245 py:unittest e e e e e e e e e e e 18

425 ENV Lo e 18
4251 eNVIZEL .. L . e e e e e e e e e e e 18

4252 eNVISEL. . . o. .o 19

42,6 JINJA . . e e e 19
4.2.6.1 g2ender. e 19

4.3

Index

432
433

4.3.4

4.3.5

4.3.6

4.3.7

... 20
Importing tasks e e e e 20
43.1.1 1DInstallapackage 20
43.1.2 2)InYAML syntax 20
43.13 2)InPythonsyntax 20
Troubleshooting o . i e e e e e e e e e e 21
Loading priority o v i o e e e e e e e e e e e 21
4.3.3.1 Environment variables loading order from .env and from .xtkd 21
4.3.3.2 Environment variables loading order in YAML syntax 21
4.3.3.3 Order of loading of makefile files in same .rkd directory 21
4334 Pathsandinheritance oo 22
4335 Tasksexecution e 22
Tasks development L e e e e 22
43.4.1 Creating simple tasks in YAML syntax 22
4342 Developing a Pythonpackage 24
4.3.43 Please check Tasks API for interfaces description 25
Global environment variables 0 o oo 25
4.3.5.1 RKD_WHITELIST_GROUPS 25
4352 RKD_ALIAS_GROUPS e 25
4353 RKD_UIL 26
4354 RKD_AUDIT_SESSION_LOGot i i 26
Custom distribution e 26
43.6.1 Example e e e 26
4.3.6.2 Read more in Global environment variables 28
Tasks APL o e 28
4.3.7.1 Each task must implement a TaskInterface 28
4.3.7.2 Execution context provides parsed shell arguments and environment variables . . . 29
4.3.7.3 Interaction with inputandoutputo 30
33

RiotKit Do Documentation, Release 1

Stop writing hacks in Makefile, use Python snippets for advanced usage, for the rest use simple few lines of Bash, share
code between your projects using Python Packages.

RKD can be used on PRODUCTION, for development, for testing, to replace some of Bash scripts inside docker
containers, and for many more, where Makefile was used.

Contents: 1

RiotKit Do Documentation, Release 1

2 Contents:

CHAPTER 1

Example use cases

Docker based production environment with multiple configuration files, procedures (see: Harbor project)

Database administrator workspace (importing dumps, creating new user accounts, plugging/unplugging
databases)

Development environment (executing migrations, importing test database, splitting tests and running parallel)

On CI (prepare project to run on eg. Jenkins or Gitlab CI) - RKD is reproducible on local computer which makes
inspection easier

Kubernetes/OKD deployment workspace (create shared YAML parts with JINJA2 between multiple environ-
ments and deploy from RKD)

Automate things like certificate regeneration on production server, RKD can generate any application configs
using JINJA2

Installers (RKD has built-in commands for replacing lines in files, modifying .env files)

https://github.com/riotkit-org/riotkit-harbor

RiotKit Do Documentation, Release 1

4 Chapter 1. Example use cases

CHAPTER 2

Quick start

1) via PIP
pip install rkd

2) Create project (will create a virtual env and commit files to GIT)
rkd :rkd:create-structure —--commit

RiotKit Do Documentation, Release 1

6 Chapter 2. Quick start

CHAPTER 3

Getting started with RKD

The “Quick start” section will end up with a .rkd directory, a requirements.txt and setup-venv.sh
1. Use setup-venv.sh to enter shell of your project, where RKD is installed with all dependencies

2. Each time you install anything from pip in your project - add it to requirements.txt, you can install additional
RKD tasks from pip

3. In .rkd/makefile.yaml you can start adding your first tasks and imports

RiotKit Do Documentation, Release 1

8 Chapter 3. Getting started with RKD

CHAPTER 4

Read more

* YAML syntax is described in Tasks development section
* Writing Python code in makefile.yaml requires to lookup 7asks API

* Learn how to import installed tasks via pip - Importing tasks

.venv)
== Executing :tasks

:sh # Executes shell commands

;init # :1n1t task 1s executing ALWAYS. That's a technical, core task.
:tasks # Lists all enabled tasks

:release

y:publish # Publishes Python packages to PIP

tbuild # Builds a Python package in a format to be packaged for publishing
Clean up the built Python medules
y:install # Install a Python package using setuptools

RiotKit Do Documentation, Release 1

running

> rkd :py:clean :py:build
xe :py:clean
+ rm -rf pbr.egg.info .eggs dist build

sdist

[pbr] writing ChangelLog
Generating Changelog

C

angeLog complete (0.0s)

Generating AUTHORS
AUTHORS complete (08.08s)

running
writing
writing
writing
writing
writing
writing

egg_1info

src/rkd.egg-1nfo/PKG-INFO

dependen links to src/rkd.egg-1nfo/dependenc
entry points to src/rkd.egg-info/entry point
requirements to src/rkd.egg-info/requires.txt
top-level names to src/rkd.egg-info/top_lewvel. txt
pbr to src/rkd.egg-info/pbr.json

[pbr] Processing SOURCES.txt
[pbr] In git context, generating filelist from git

warning:
warning:
warning:

writing

no prewv y-included files found matching *'.gitignore’

no previously-included files found matching '.gitreview’

no previously-included files matching '*.pyc' found anywhere in distribution
manifest file 'src/rkd.egg-1info/SOURCES.tx

[pbr] reno was not found or 1s too old. Skipping release notes

4.1 Basics

RKD command-line usage is highly inspired by GNU Make and Gradle, but it has its own extended possibilities to
make your scripts smaller and more readable.

* Tasks are prefixed always with *“:”.

* Each task can handle it’s own arguments (unique in RKD)

* “@” allows to propagate arguments to next tasks (unique in RKD)

4.1.1 Tasks arguments usage in shell and in scripts

Executing multiple tasks in one command:

’rkd :taskl :task2

Multiple tasks with different switches:

’rkd :taskl —~hello :task2 —--world

Tasks sharing the same switches

Both tasks will receive switch “~hello”

ST

rkd @ —--hello :taskl :task2

(continues on next page)

10

Chapter 4. Read more

RiotKit Do Documentation, Release 1

(continued from previous page)

handy, huh?

Advanced usage of shared switches

Operator “@” can set switches anytime, it can also clear or replace switches in NEXT TASKS.

expands to:

:taskl —--hello
:task2 —--hello
:task3

:task4 —--world
:taskb —--world

rkd @ —-hello :taskl :task2 @ :task3 @ --world :task4 :task5

Weritten as a pipeline (regular bash syntax)

It’s exactly the same example as above, but written multiline. It’s recommended to write multiline commands if they
are longer.

rkd @ ——hello \
:taskl \
:task2 \
@
:task3 \
@ ——world \
:task4 \
:taskb

4.1.2 YAML syntax - makefile.yaml

YAML syntax has an advantage of simplicity and clean syntax, custom bash tasks can be defined there easier than in
Python. To use YAML you need to define makefile.yaml file in .rkd directory.

NOTICE: makefile.py and makefile.yaml can exist together. Python version will be loaded first, the YAML
version will append changes in priority.

version: org.riotkit.rkd/0.3
imports:
- rkd.standardlib.docker.TagImageTask

tasks:
see this task in "rkd :tasks"
run with "rkd :examples:bash-test"
rexamples:bash-test:
description: Execute an example command in bash - show only python related tasks
steps:
echo "RKD_DEPTH: $ # >= 2 means we are running rkd-in-rkd"
echo "RKD_PATH: $ "
rkd --silent :tasks | grep ":py"

try "rkd :examples:arguments-test —--text=Hello --test-boolean"
rexamples:arguments—test:
description: Show example usage of arguments in Bash
arguments:
"—-—text":

(continues on next page)

4.1. Basics 11

RiotKit Do Documentation, Release 1

(continued from previous page)

help: "Adds text message"
required: True
"-—-test-boolean":
help: "Example of a boolean flag"
action: store_true # or store_ false
steps:

#!bash

echo " ==> In Bash"

echo " Text: ${ARG TE

echo " Boolean test: S${ARG_
-

#!python
print (' ==> In Python')
print (' Text: %s ' % ctx.args['text'])

print (' Text: ' % str(ctx.args|['test_boolean']))

return True

run with "rkd :examples:list-standardlib-modules"
rexamples:list-standardlib-modules:
description: List all modules in the standardlib
steps:

#!python
ctx: ExecutionContext
this: TaskInterface

import os

print ('Hello world')

print (os)

print (ctx)
(

print (this)

return True

4.1.3 What’s loaded first? See Paths and inheritance
4.2 Tasks

4.2.1 Shell

Provides tasks for shell commands execution - mostly used in YAML syntax and in Python modules.

4.2.1.1 :sh
Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib.shell rkd.standardlib{sipepl. fitstall okdemanSFask
LECT VERSION

12

Chapter 4. Read more

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

Executes a Bash script. Can be multi-line.
Notice: phrase %9RKD% is replaced with an rkd binary name

Example of plain usage:

rkd :sh -c "ps aux"
rkd :sh —-background -c "some-heavy-task"

Example of task alias usage:

from rkd.syntax import TaskAliasDeclaration as Task

#
Example of Makefile-like syntax
#
IMPORTS = []
TASKS = [
Task (':find-images', [
':sh', '-c¢', 'find ../../ -name \'x.png\'"'
1)y
Task(':pbuild', [':sh', '-c', '"'' set -x;
cd ../../../
chmod +x setup.py
./setup.py build
ls -la
LI B)])
]
4.2.1.2 :exec
Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib.shell rkd.standardlib}sipepl. fnstalP rrkodssCS Rrmiand
LECT VERSION

Works identically as :sh, but for spawns a single process. Does not allow a multi-line script syntax.

4.2.1.3 Class to import: BaseShellCommandWithArgumentParsingTask

Creates a command that executes bash script and provides argument parsing using Python’s argparse. Parsed arguments
are registered as ARG_{ {argument_name}} eg. —activity-type would be exported as ARG_ACTIVITY_TYPE.

IMPORTS += [
BaseShellCommandWithArgumentParsingTask (
name=":protest",
group=":activism",

description="Take action!",

(continues on next page)

4.2. Tasks 13

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

(continued from previous page)

arguments_definition=lambda argparse: (
argparse.add_argument ('-—activity-type', '-t', help='Select an activity,,
—type')
) 14
command="""
echo "Let's act! Let's $ r

T

4.2.2 Technical/Core

4.2.2.1 :init
Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib rkd.standardlib|Iipiffdsistall rkd== SE-
LECT VERSION

This task runs ALWAYS. :init implements a possibility to inherit global settings to other tasks

4.2.2.2 :tasks

Package to import Single task | PIP package to in- | Stable version
to import stall

rkd.standardlib rkd.standardlib| Tpihsinstal ofKdsk= SE-
LECT VERSION

Lists all tasks that are loaded by all chained makefile.py configurations.
Environment variables:
* RKD_WHITELIST_GROUPS: (Optional) Comma separated list of groups to only show on the list

« RKD_ALIAS_GROUPS: (Optional) Comma separated list of groups aliases eg. “:international-workers-
association->:iwa,:anarchist-federation->:fa”

4.2.2.3 :version

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib rkd.standardlib| Vpipiims§tablkrkd== SE-
LECT VERSION

Shows version of RKD and lists versions of all loaded tasks, even those that are provided not by RiotKit. The version
strings are taken from Python modules as RKD strongly rely on Python Packaging.

14 Chapter 4. Read more

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

4.2.2.4 CallableTask

Package to import Single task | PIP package to in- | Stable version
to import stall

rkd.standardlib rkd.standardlib|Gpipaidstidblckd== SE-
LECT VERSION

This is actually not a task to use directly, it is a template of a task to implement yourself. It’s kind of a shortcut to
create a task by defining a simple method as a callback.

import os

from rkd.syntax import TaskDeclaration
from rkd.standardlib import CallableTask
from rkd.contract import ExecutionContext

def union_method (context: ExecutionContext) —> bool:
os.system('xdg-open https://iwa-ait.org')
return True

IMPORTS = [
TaskDeclaration (CallableTask (':create-union', union_method))

]

TASKS = []

4.2.2.5 :rkd:create-structure

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib rkd.standardlib|Gpipitititalt trkdFasISE-
LECT VERSION

Creates a template structure used by RKD in current directory.

4.2.2.6 :file:line-in-file

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib rkd.standardlib|LpiplidstdTakd== SE-
LECT VERSION

Similar to the Ansible’s lineinfile, replaces/creates/deletes a line in file.

Example usage:

echo "Number: 10" > test.txt

rkd -rl debug :file:line-in-file test.txt ——regexp="Number: ([0-9]+)?(.%)" —-—insert=
'Number: Smatch[0] new: 10"

(continues on next page)

4.2. Tasks 15

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

(continued from previous page)

cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)7?(.*)" ——insert=
— "Number: Smatch[0] / new: 6'

cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)7?(.*)" ——insert=
— "Number: 50'

cat test.txt

rkd -rl debug :file:line-in-file test.txt —-—regexp="Number: ([0-9]+)?(.*)" —-—insert=
< "Number: Smatch[0] / new: 90'

cat test.txt

4.2.3 Docker

4.2.3.1 :docker:tag

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib.docker | rkd.standardlibldpipkandtadl mkadeFaSE-

LECT VERSION

Performs a docker-style tagging of an image that is being released - example: 1.0.1 -> 1.0 -> 1 -> latest

Example of usage:

rkd :docker:tag —--image=quay.io/riotkit/filerepository:3.0.0-RCl1 —--propagate -rf debug

4.2.3.2 :docker:push

Package to import

Single task
to import

PIP package to in-
stall

Stable version

rkd.standardlib.docker

rkd.standardlib)|

dpipcanstaihtkde= SE-
LECT VERSION

Does same thing and taking same arguments as :docker:tag, one difference - pushing already created tasks.

4.2.4 Python

This package was extracted from standardlib to rkd_python, but is maintained together with RKD as part of RKD core.

Set of Python-related tasks for building, testing and publishing Python packages.

16

Chapter 4. Read more

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

> rkd :py:clean :py:build
xe :py:clean
+ rm -rf pbr.egg.info .eggs dist build

running sdist
[pbr] writing ChangelLog
Generating Changelog
ChangeLog complete (0.0s)
Generating AUTHORS
AUTHORS complete (08.08s)
running egg_info
writing src/rkd.egg-info/PKG-INFO
writing dependen links to src/rkd.egg-1nfo/dependenc
writing entry points to src/rkd.egg-info/entry point
writing requirements to src/rkd.egg-info/requires.txt
writing top-level names to src/rkd.egg-info/top_level.txt
writing pbr to src/rkd.egg-info/pbr.json
[pbr] Processing SOURCES.txt
[pbr] In git context, generating filelist from git
warning: no prewv y-included files found matching *'.gitignore’
warning: no previously-included files found matching '.gitreview’
warning: no previously-included files matching '*.pyc' found anywhere in distribution
writing manifest file 'src/rkd.egg-info/SOURCES. tx
[pbr] reno was not found or 1s too old. Skipping release notes

4.2.4.1 :py:publish

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd_python rkd_python.Publpiplask install
rkd_python== SE-
LECT VERSION

Publish a package to the PyPL

Example of usage:

rkd :py:publish —--username=__token__ —-password=.... --skip-existing —-test

4.2.4.2 :py:build

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd_python rkd_python.Bujlgijpsk install
rkd_python== SE-
LECT VERSION

Runs a build through setuptools.

4.2. Tasks 17

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history

RiotKit Do Documentation, Release 1

4.2.4.3 :py:install

Package to import

Single task
to import

PIP package to in-
stall

Stable version

rkd_python

rkd_python.Instapipask

install
rkd_python== SE-
LECT VERSION

Installs the project as Python package using setuptools. Calls ./setup.py install.

4.2.4.4 :py:clean

Package to import

Single task
to import

PIP package to in-
stall

Stable version

rkd_python

rkd_python.Clgapifask

install
rkd_python== SE-
LECT VERSION

Removes all files related to building the application.

4.2.4.5 :py:unittest

Package to import

Single task
to import

PIP package to in-
stall

Stable version

rkd_python

rkd_python.Un|

itpeptTask install
rkd_python== SE-
LECT VERSION

Runs Python’s built’in unittest module to execute unit tests.

Examples:

rkd :py:unittest

rkd :py:unittest -p some_test
rkd :py:unittest —-tests-dir=..

/test

4.2.5 ENV

Manipulates the environment variables stored in a .env file

RKD is always loading an .env file on startup, those tasks in this package allows to manage variables stored in .env
file in the scope of a project.

4.2.5.1 :env:get

Package to import

Single task
to import

PIP package to in-
stall

Stable version

rkd.standardlib.env

rkd.standardlib|

cpipSinBtailltki== SE-
LECT VERSION

18

Chapter 4. Read more

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd_python/#history
https://pypi.org/project/rkd_python/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

Example of usage:

rkd :env:get ——name COMPOSE_PROJECT_NAME

4.2.5.2 :env:set

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib.env rkd.standardlibjepipGaedtall ikd== SE-
LECT VERSION

Example of usage:

rkd :env:set —--name COMPOSE_PROJECT_NAME --value hello
rkd :env:set —--name COMPOSE_PROJECT_NAME --ask
rkd :env:set —--name COMPOSE_PROJECT_NAME --ask —--ask-text="Please enter your name:"

4.2.6 JINJA

Renders JINJA?2 files, and whole directories of files. Allows to render by pattern.

All includes and extends are by default looking in current working directory path.

4.2.6.1 :j2:render

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib.jinja rkd.standardlib}jipip. kRl mdtcke=TSH
LECT VERSION

Renders a single file from JINJA2.

Example of usage:

rkd :j2:render -s SOURCE-FILE.yaml.j2 -o OUTPUT-FILE.yaml

4.2.6.2 :j2:directory-to-directory

Package to import Single task | PIP package to in- | Stable version
to import stall
rkd.standardlib.jinja rkd.standardlib}jipip. inkt®lemitelerTadk-
LECT VERSION

Renders all files recursively in given directory to other directory. Can remove source files after rendering them to the
output files.

Pattern is a regexp pattern that matches whole path, not only file name

Example usage:

4.2. Tasks 19

https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax
https://pypi.org/project/rkd/#history
https://pypi.org/project/rkd/#history

RiotKit Do Documentation, Release 1

rkd :j2:directory-to-directory \
—--source="/some/path/templates" \
-—target="/some/path/rendered" \
-—delete-source-files \
——pattern="(.x).j2"

4.3 Usage

4.3.1 Importing tasks

Tasks can be defined as installable Python’s packages that you can import in your Makefile
Please note:
 To import a group, the package you try to import need to hvve a defined imports() method inside of the package.

* The imported group does not need to import automatically dependend tasks (but it can, it is recommended), you
need to read into the docs of specific package if it does so

4.3.1.1 1) Install a package

RKD defines dependencies using Python standards.

Example: Given we want to import tasks from package “rkt_armutils”.

echo "rkt_ armutils==3.0" >> requirements.txt
pip install -r requirements.txt

Good practices:

* Use fixed versions eg. 3.0 or even 3.0.0 and upgrade only intentionally to reduce your work on fixing bugs

4.3.1.2 2) In YAML syntax

Example: Given we want to import task “InjectQEMUBinaryIntoContainerTask”, or we want to import whole
“rkt_armutils.docker” group

imports:
Import whole package, 1if the package defines a group import (method imports())
- rkt_armutils.docker

Or import single task
- rkt_armutils.docker.InjectQEMUBinaryIntoContainerTask

4.3.1.3 2) In Python syntax

Example: Given we want to import task “InjectQEMUBinaryIntoContainerTask”, or we want to import whole
“rkt_armutils.docker” group

20 Chapter 4. Read more

RiotKit Do Documentation, Release 1

from rkd.syntax import TaskDeclaration
from rkt_armutils.docker import InjectQEMUBinaryIntoContainerTask

... (use "+" operator to append, remove "+" if you didn't define any import yet)
IMPORTS += [TaskDeclaration (InjectQEMUBinaryIntoContainerTask)]

4.3.2 Troubleshooting

1. Output is corrupted or there is no output from a shell command executed inside of a task

The output capturing is under testing. The Python’s subprocess module is skipping “sys.stdout” and “sys.stderr” by
writing directly to /dev/stdout and /dev/stderr, which makes output capturing difficult.

Run rkd in compat mode to turn off output capturing from shell commands:

RKD_COMPAT_SUBPROCESS=true rkd :some-task-here

4.3.3 Loading priority
4.3.3.1 Environment variables loading order from .env and from .rkd

Legend: Top is most important, the variables loaded on higher level are not overridden by lower level
1. Operating system environment
2. Current working directory .env file

3. .env files from directories defined in RKD_PATH

4.3.3.2 Environment variables loading order in YAML syntax

Legend: Top - is most important
1. Operating system environment
2. .env file
3. Per-task “environment” section
4. Per-task “env_file” imports
5. Global “environment” section

6. Global “env_file” imports

4.3.3.3 Order of loading of makefile files in same .rkd directory

Legend: Lower has higher priority (next is appending changes to previous)
1. *.py
2. *yaml
3. *.yml

4.3. Usage 21

RiotKit Do Documentation, Release 1

4.3.3.4 Paths and inheritance

RKD by default search for .rkd directory in current execution directory - ./.rkd.
The search order is following (from lower to higher load priority):
1. RKD’s internals (we provide a standard tasks like :fasks, :init, :sh, :exec and more)
2. Just/lib/rkd
3. User’s home ~/.rkd
4. Current directory ./.rkd
5. RKD_PATH
Custom path defined via environment variable

RKD_PATH allows to define multiple paths that would be considered in priority.

export RKD_PATH="/some/path:/some/other/path:/home/user/riotkit/.rkd-second"

How the makefiles are loaded?

Each makefile is loaded in order, next makefile can override tasks of previous. That’s why we at first load internals,
then your tasks.

4.3.3.5 Tasks execution

Tasks are executed one-by-one as they are specified in commandline or in TaskAlias declaration (commandline argu-
ments).

rkd :task-1 :task-2 :task-3

1. task-1
2. task-2
3. task-3

A —keep-going can be specified after given task eg. :task-2 —keep-going, to ignore a single task failure and in conse-
quence allow to go to the next task regardless of result.

4.3.4 Tasks development

RKD has two approaches to define a task. The first one is simpler - in makefile in YAML or in Python. The second
one is a set of tasks as a Python package.

4.3.4.1 Creating simple tasks in YAML syntax

Example 1:

version: org.riotkit.rkd/0.3
imports:
- rkd.standardlib.docker.TagImageTask

tasks:
see this task in "rkd :tasks"

(continues on next page)

22 Chapter 4. Read more

RiotKit Do Documentation, Release 1

(continued from previous page)

run with "rkd :examples:bash-test"
:examples:bash-test:
description: Execute an example command in bash - show only python related tasks
steps:
echo "RKD_DEPTH: ${RKD DEPTH} # >= 2 means we are running rkd-in-rkd"
echo "RKD_PATH: ${RKD PAT
rkd —--silent :tasks | grep ":py"

T
H}"

try "rkd :examples:arguments-test —--text=Hello —--test-boolean"
rexamples:arguments-test:
description: Show example usage of arguments in Bash
arguments:
"——text":
help: "Adds text message"
required: True
"-—test-boolean":
help: "Example of a boolean flag"
action: store_true # or store false

steps:
-

#!bash
echo " ==> In Bash"
echo " Text: ${ARG _TEXT}"
echo " Boolean test: S${ARG TEST BOOLEAN}"
#!python
print (' ==> In Python')
print (' Text: ¢s ' % ctx.args['text'])
print (' Text: %s ' % str(ctx.args['test_boolean']))

return True

run with "rkd :examples:list-standardlib-modules"
rexamples:list-standardlib-modules:
description: List all modules in the standardlib
steps:
- |
#!python
ctx: ExecutionContext
this: TaskInterface

import os
print ('Hello world')
print (os)
print (ctx)

(

print (this)

return True

Example 2:

version: org.riotkit.rkd/0.3

environment:
GLOBALLY_DEFINED: "16 May 1966, seamen across the UK walked out on a nationwide_

—strike for the first time in half a century. Holding solid for seven weeks, they,,
—won a reduction in working hours from 56 to 48 per week "

(continues on next page)

4.3. Usage 23

RiotKit Do Documentation, Release 1

(continued from previous page)

env_files:
- env/global.env

tasks:
thello:
description: |
#1 line: 11 June 1888 Bartolomeo Vanzetti, Italian-American anarchist who,,
—was framed & executed alongside Nicola Sacco, was born.
#2 line: This is his short autobiography:
#3 line: https://libcom.org/library/story-proletarian-11ife

environment:
INLINE_PER_TASK: "17 May 1972 10,000 schoolchildren in the UK walked out,
—on strike in protest against corporal punishment. Within two years, London state
—schools banned corporal punishment. The rest of the country followed in 1987."
env_files: ['env/per—-task.env']

steps:
echo " >> ENVIRONMENT VARIABLES DEMO"
echo "Inline defined in this task: $ \n\n"
echo "Inline defined globally: $ \n\n"
echo "Included globally - global.env: $ \n\n"
echo "Included in task - per-task.env: $ \n\n"

Explanation of examples:
1. “arguments” is an optional dict of arguments, key is the argument name, subkeys are passed directly to argparse
“steps” is a mandatory list or text with step definition in Bash or Python language
“description” is an optional text field that puts a description visible in “:tasks” task
“environment” is a dict of environment variables that can be defined

“env_files” is a list of paths to .env files that should be included

SAE I i

“imports” imports a Python package that contains tasks to be used in the makefile and in shell usage

4.3.4.2 Developing a Python package

Each task should implement methods of rkd.contract.TaskInterface interface, that’s the basic rule.

Following example task could be imported with path rkd.standardlib.ShellCommandTask, in your own task you
would have a different package name instead of rkd.standardlib.

Example task from RKD standardlib:

class ShellCommandTask (TaskInterface) :
"""Executes shell scripts"""

def get_name (self) -> str:
return ':sh'

def get_group_name (self) —-> str:
return ''

def configure_argparse(self, parser: ArgumentParser):
parser.add_argument ('--cmd', '-c', help='Shell command', required=True)

(continues on next page)

24 Chapter 4. Read more

RiotKit Do Documentation, Release 1

(continued from previous page)

def execute(self, context: ExecutionContext) -> bool:
self.sh() and self.io() are part of TaskUtilities via TaskInterface

try:

self.sh(context.args['cmd'], capture=False)
except CalledProcessError as e:

self.io() .error_msg(str(e))

return False

return True

Explanation of example:

1. The docstring in Python class is what will be shown in :tasks as description. You can also define your descrip-
tion by implementing def get_description() -> str

2. Name and group name defines a full name eg. :your-project:build

3. def configure_argparse() allows to inject arguments, and —help description for a task - it’s a standard Python’s
argparse object to use

4. def execute() provides a context of execution, please read Tasks API chapter about it. In short words you can
get commandline arguments, environment variables there.

5. self.io() is providing input-output interaction, please use it instead of print, please read Tasks API chapter about
it.

4.3.4.3 Please check Tasks API for interfaces description

4.3.5 Global environment variables

Global switches designed to customize RKD per project. Put environment variables into your .env file, so you will no
have to prepend them in the commandline every time.

Read also about Environment variables loading order from .env and from .rkd

4.3.5.1 RKD_WHITELIST_GROUPS

Allows to show only selected groups in the “:tasks” list. All tasks from hidden groups are still callable.

Examples:

RKD_WHITELIST_GROUPS=:rkd, rkd :tasks
RKD_WHITELIST_GROUPS=:rkd rkd :tasks

4.3.5.2 RKD_ALIAS_GROUPS

Alias group names, so it can be shorter, or even group names could be not typed at all.
Notice: :tasks will rename a group with a first defined alias for this group

Examples:

RKD_ALIAS_GROUPS=":rkd->:r" rkd :tasks :r:create-structure
RKD_ALIAS_GROUPS=":rkd->" rkd :tasks :create-structure

4.3. Usage 25

RiotKit Do Documentation, Release 1

4.3.5.3 RKD_UI

Allows to toggle (true/false) the UI - messages like “Executing task X or “Task finished”, leaving only tasks stdout,
stderr and logs.

4.3.5.4 RKD_AUDIT_SESSION_LOG

Logs output of each executed task, when set to “true”.

Example structure of logs:

1ls .rkd/logs/2020-06-11/11\:06\:02.068556/
task-1-init.log task-2-harbor_service_list.log

4.3.6 Custom distribution
RiotKit Do can be used as a transparent framework for writing tasks for various usage, especially for specialized usage.
To simplify usage for end-user RKD allows to create a custom distribution.
Custom distribution allows to:
* Define custom ‘binary’ name eg. “harbor” instead of “rkd”
* Hide unnecessary tasks in custom ‘binary’ (filter by groups - whitelist)

* Make shortcuts to tasks: Skip writing group name, make a group name to be appended by default

4.3.6.1 Example

import os
from rkd import main as rkd_main

def env_or_default (env_name: str, default: str):
return os.environ[env_name] if env_name in os.environ else default

def main() :
os.environ['RKD_WHITELIST_GROUPS'] = env_or_default ('RKD_WHITELIST_GROUPS', ':env,
—:tharbor, ")
os.environ['RKD_ALIAS _GROUPS'] = env_or_default ('RKD_ALIAS _GROUPS', '—>:harbor'")
os.environ['RKD_UI'] = env_or_default ('RKD_UI', 'false')
rkd_main ()

if name == '_ _main
main ()

$ harbor :tasks

[globall

:sh # Executes shell scripts

rexec # Spawns a shell process

:init # :init task is executing ALWAYS.
—~That's a technical, core task.

:tasks # Lists all enabled tasks

:version # Shows version of RKD and of all

—loaded tasks

(continues on next page)

26 Chapter 4. Read more

RiotKit Do Documentation, Release 1

(continued from previous page)

[harbor]

:compose:ps # List all containers

:start # Create and start containers

:stop # Stop running containers

:remove # Forcibly stop running containers
—and remove (keeps volumes)

:service:list # Lists all defined containers in_
—YAML files (can be limited by —--profile selector)

:service:up # Starts a single service
:service:down # Brings down the service without
—~deleting the container

:service:rm # Stops and removes a container and
—~it's images

:pull # Pull images specified in_,
—~containers definitions

:restart # Restart running containers
:config:list # Gets environment variable value
:config:enable # Enable a configuration file - YAML
:config:disable # Disable a configuration file -
— YAML

:prod:gateway:reload # Reload gateway, regenerate
—missing SSL certificates

:prod:gateway:ssl:status # Show status of SSL certificates
:prod:gateway:ssl:regenerate # Regenerate all certificates with
—~force

:prod:maintenance:on # Turn on the maintenance mode
:prod:maintenance:off # Turn on the maintenance mode
:git:apps:update # Fetch a git repository from the
—remote

:git:apps:update-all # List GIT repositories
:git:apps:set-permissions # Make sure that the application,
—would be able to write to allowed directories (eg. upload directories)
:git:apps:list # List GIT repositories

[env]

renv:get # Gets environment variable value
renv:set # Sets environment variable in the
—env file

Use —--help to see task environment variables and switches, eg. rkd :sh --help, rkd —--

—help

Notices for above example:
* No need to type eg. :harbor:config:list - just :config:list (RKD_ALIAS_GROUPS used)
* No “rkd” group is displayed (RKD_WHITELIST_GROUPS used)

¢ There is no

information about task name (RKD_UT used)

4.3. Usage

27

RiotKit Do Documentation, Release 1

4.3.6.2 Read more in Global environment variables
4.3.7 Tasks API

4.3.7.1 Each task must implement a TaskInterface

class rkd.contract.TaskInterface

configure_argparse (parser: argparse.ArgumentParser)
Allows a task to configure ArgumentParser (argparse)

copy_internal_dependencies (task)
Allows to execute a task-in-task, by copying dependent services from one task to other task

exec (cmd: str, capture: bool = False, background: bool = False) — Optional[str]
Starts a process in shell. Throws exception on error. To capture output set capture=True

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

execute (context: rkd.contract. ExecutionContext) — bool
Executes a task. True/False should be returned as return

format_task_name (name: str) — str
Allows to add a fancy formatting to the task name, when the task is displayed eg. on the :tasks list

get_declared_envs () — Dict[str, str]
Dictionary of allowed envs to override: KEY -> DEFAULT VALUE

get_full name ()
Returns task full name, including group name

get_group_name () — str
Group name where the task belongs eg. “:publishing”, can be empty.

get_name () — str
Task name eg. “:sh”

io () — rkd.inputoutput.IO
Gives access to Input/Output object

rkd (args: list, verbose: bool = False, capture: bool = False) — str
Spawns an RKD subprocess

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

sh (cmd: str, capture: bool = False, verbose: bool = False, strict: bool = True, env: dict = None) —
Optional[str]
Executes a shell script in bash. Throws exception on error. To capture output set capture=True
NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

silent_sh (cmd: str, verbose: bool = False, strict: bool = True, env: dict = None) — bool
sh() shortcut that catches errors and displays using IO().error_msg()

NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess
may be not catch properly into the logs

28 Chapter 4. Read more

RiotKit Do Documentation, Release 1

static table (header: list, body: list, tablefmt: str = ’simple’, floatfmt: str = ’g’, numalign: str
= ’decimal’, stralign: str = ’left’, missingval: str = 7, showindex: str = 'default’,

disable_numparse: bool = False, colalign: str = None)
Renders a table

Parameters
* header -
* body —
* tablefmt —
e floatfmt —
* numalign —
* stralign-—
* missingval —
* showindex —
* disable_numparse —
* colalign -

Returns Formatted table as string

4.3.7.2 Execution context provides parsed shell arguments and environment variables

class rkd.contract.ExecutionContext (declaration: rkd.contract.TaskDeclarationInterface, par-
ent: Optional[rkd.contract. GroupDeclarationlnterface]
= None, args: Dict[str, str] = {}, env: Dict[str, str] =

Defines which objects could be accessed by Task. It’s a scope of a single task execution.

get_arg (name: str) — Optional[str]
Get argument or option

Usage: ctx.get_arg(‘—name’) # for options ctx.get_arg(‘name’) # for arguments

Raises KeyError when argument/option was not defined

Returns Actual value or default value

get_arg_or_env (name: str) — Optional[str]
Provides value of user input

Usage: get_arg_or_env(‘—file-path’) resolves into FILE_PATH env variable, and —file-path switch
(file_path in argparse)

Behavior: When user provided explicitly switch eg. —history-id, then it’s value will be taken in priority.
If switch —history-id was not used, but user provided HISTORY_ID environment variable, then it will
be considered.

If no switch provided and no environment variable provided, but a switch has default value - it would
be returned. If no switch provided and no environment variable provided, the switch does not have
default, but environment variable has a default value defined, it would be returned.

Raises MissingInputException— When no switch and no environment variable was pro-
vided, then an exception is thrown.

4.3. Usage 29

RiotKit Do Documentation, Release 1

get_env (name: str, error_on_not_used: bool = False)
Get environment variable value

4.3.7.3 Interaction with input and output

class rkd.inputoutput.IO
Interacting with input and output - stdout/stderr/stdin, logging

capture_descriptors (farget_files: List[str] = None, stream=None, enable_standard_out: bool =

True)
Capture stdout and stderr from a block of code - use with ‘with’

critical (text)
Logger: critical

debug (rext)
Logger: debug

err (text)
Standard error

errln (text)
Standard error + newline

error (fext)
Logger: error

error_msg (fext)
Error message (optional output)

hl (text)
Heading #1 (optional output)

h2 (text)
Heading #2 (optional output)

h3 (text)
Heading #3 (optional output)

h4 (text)
Heading #3 (optional output)

info (text)
Logger: info

info_msg (rext)
Informational message (optional output)

is_silent () — bool
Is output silent? In silent mode OPTIONAL MESSAGES are not shown

opt_out (rext)
Optional output - fancy output skipped in —silent mode

opt_outln (fext)
Optional output - fancy output skipped in —silent mode + newline

out (rext)
Standard output

outln (fext)
Standard output + newline

30 Chapter 4. Read more

RiotKit Do Documentation, Release 1

print_group (fext)
Prints a colored text inside brackets [text] (optional output)

print_line ()
Prints a newline

print_opt_line()
Prints a newline (optional output)

print_separator ()
Prints a text separator (optional output)

success_msg (fext)
Success message (optional output)

warn (text)
Logger: warn

4.3. Usage 31

RiotKit Do Documentation, Release 1

32

Chapter 4. Read more

Index

C

capture_descriptors ()
method), 30
configure_argparse ()
(rkd.contract. TaskInterface method), 28
copy_internal_ dependencies()
(rkd.contract. TaskInterface method), 28
critical () (rkd.inputoutput.IO method), 30

D

debug () (rkd.inputoutput.IO method), 30

E

err () (rkd.inputoutput.10 method), 30

errln () (rkd.inputoutput.IO method), 30

error () (rkd.inputoutput.IO method), 30
error_msqg () (rkd.inputoutput.10 method), 30
exec () (rkd.contract.TaskInterface method), 28
execute () (rkd.contract. Taskinterface method), 28
ExecutionContext (class in rkd.contract), 29

F

format_task_name ()

(rkd.inputoutput.10

(rkd.contract. TaskInterface

method), 28

G

get_arg () (rkd.contract.ExecutionContext method),
29

get_arg_or_env () (rkd.contract.ExecutionContext
method), 29

get_declared_envs () (rkd.contract.TaskInterface
method), 28

get_env () (rkd.contract.ExecutionContext method),
29

get_full_name () (rkd.contract. TaskInterface
method), 28

get_group_name () (rkd.contract. TaskInterface
method), 28

get_name () (rkd.contract. TaskInterface method), 28

T

h1l () (rkd.inputoutput.lO method), 30
h2 () (rkd.inputoutput.IO method), 30
h3 () (rkd.inputoutput.IO method), 30
h4 () (rkd.inputoutput.IO method), 30

info () (rkd.inputoutput.lO method), 30
info_msqg () (rkd.inputoutput.10 method), 30
10 (class in rkd.inputoutput), 30

io () (rkd.contract. Tasklnterface method), 28
is_silent () (rkd.inputoutput.lO method), 30

O

opt_out () (rkd.inputoutput.lO method), 30
opt_outln () (rkd.inputoutput.1O method), 30
out () (rkd.inputoutput.IO method), 30

outln () (rkd.inputoutput.IO method), 30

P

print_group () (rkd.inputoutput.IO method), 30

print_line () (rkd.inputoutput.lO method), 31

print_opt_line () (rkd.inputoutput.IO method), 31

print_separator () (rkd.inputoutput.IO method),
31

R

rkd () (rkd.contract. TaskInterface method), 28

S

sh () (rkd.contract. TaskInterface method), 28
silent_sh () (rkd.contract. Taskinterface method), 28
success_mnsqg () (rkd.inputoutput.1O method), 31

T

table () (rkd.contract. Taskinterface static method), 28
TaskInterface (class in rkd.contract), 28

W

warn () (rkd.inputoutput.1O method), 31

33

	Example use cases
	Quick start
	Getting started with RKD
	Read more
	Basics
	Tasks arguments usage in shell and in scripts
	YAML syntax - makefile.yaml
	What’s loaded first? See Paths and inheritance

	Tasks
	Shell
	:sh
	:exec
	Class to import: BaseShellCommandWithArgumentParsingTask

	Technical/Core
	:init
	:tasks
	:version
	CallableTask
	:rkd:create-structure
	:file:line-in-file

	Docker
	:docker:tag
	:docker:push

	Python
	:py:publish
	:py:build
	:py:install
	:py:clean
	:py:unittest

	ENV
	:env:get
	:env:set

	JINJA
	:j2:render
	:j2:directory-to-directory

	Usage
	Importing tasks
	1) Install a package
	2) In YAML syntax
	2) In Python syntax

	Troubleshooting
	Loading priority
	Environment variables loading order from .env and from .rkd
	Environment variables loading order in YAML syntax
	Order of loading of makefile files in same .rkd directory
	Paths and inheritance
	Tasks execution

	Tasks development
	Creating simple tasks in YAML syntax
	Developing a Python package
	Please check Tasks API for interfaces description

	Global environment variables
	RKD_WHITELIST_GROUPS
	RKD_ALIAS_GROUPS
	RKD_UI
	RKD_AUDIT_SESSION_LOG

	Custom distribution
	Example
	Read more in Global environment variables

	Tasks API
	Each task must implement a TaskInterface
	Execution context provides parsed shell arguments and environment variables
	Interaction with input and output

	Index

