

RiotKit-Do (RKD) usage and development manual

RKD is a stable, open-source, multi-purpose automation tool which balance flexibility with simplicity. The primary language is Python
and YAML syntax.

RiotKit-Do can be compared to Gradle and to GNU Make, by allowing both Python and Makefile-like YAML syntax.

What I can do with RKD?

	Simplify the scripts

	Put your Python and Bash scripts inside a YAML file (like in GNU Makefile)

	Do not reinvent the wheel (argument parsing, logs, error handling for example)

	Share the code across projects and organizations, use native Python Packaging to share tasks (like in Gradle)

	Natively integrate scripts with .env files

	Automatically generate documentation for your scripts

	Maintain your scripts in a good standard

RKD can be used on PRODUCTION, for development, for testing, to replace some of Bash scripts inside docker containers,
and for many more, where Makefile was used.

[image: _images/syntax.png]

Example use cases

	Docker based production environment with multiple configuration files, procedures (see: Harbor project [https://github.com/riotkit-org/riotkit-harbor])

	Database administrator workspace (importing dumps, creating new user accounts, plugging/unplugging databases)

	Development environment (executing migrations, importing test database, splitting tests and running parallel)

	On CI (prepare project to run on eg. Jenkins or Gitlab CI) - RKD is reproducible on local computer which makes inspection easier

	Kubernetes/OKD deployment workspace (create shared YAML parts with JINJA2 between multiple environments and deploy from RKD)

	Automate things like certificate regeneration on production server, RKD can generate any application configs using JINJA2

	Installers (RKD has built-in commands for replacing lines in files, modifying .env files, asking user questions and validating answers)

Install RKD

RiotKit-Do is delivered as a Python package that can be installed system-wide or in a virtual environment.
The virtual environment installation is similar in concept to the Gradle wrapper (gradlew)

1) via PIP
pip install rkd

2) Create project (will create a virtual env and commit files to GIT)
rkd :rkd:create-structure --commit

Getting started in freshly created structure

The “Quick start” section ends up with a .rkd directory, a requirements.txt and setup-venv.sh

	Use eval $(setup-venv.sh) to enter shell of your project, where RKD is installed with all dependencies

	Each time you install anything from pip in your project - add it to requirements.txt, you can install additional RKD tasks from pip

	In .rkd/makefile.yaml you can start adding your first tasks and imports

Create your first task with Beginners guide - on YAML syntax example

Check how to use commandline to run tasks in RKD with Commandline basics

See how to import existing tasks to your Makefile with Importing tasks page

Keep learning

	YAML syntax is described also in Tasks development section

	Writing Python code in makefile.yaml requires to lookup Tasks API

	Learn how to import installed tasks via pip - Importing tasks

	You can also write tasks code in pure Python and redistribute those tasks via Python’s PIP - see Tasks development

	With RKD you can create interactive installers - check the Creating installer wizards with RKD section

Contents:

	Beginners guide - on YAML syntax example
	Where to place files

	Environment variables

	Arguments parsing

	Defining tasks in Python code

	YAML syntax reference

	Extended usage - Makefile in Python syntax
	Check Detailed usage manual page for description of all environment variables, mechanisms, good practices and more

	Commandline basics
	Tasks arguments usage in shell and in scripts

	Importing tasks
	1) Install a package

	2) In YAML syntax

	2) In Python syntax

	3) Inline syntax

	Ready to go? Check Built-in tasks that you can import in your Makefile

	ADVANCED usage
	Troubleshooting

	Loading priority
	Environment variables loading order from .env and from .rkd

	Environment variables loading order in YAML syntax

	Order of loading of makefile files in same .rkd directory

	Paths and inheritance

	Tasks execution

	Tasks development
	Option 1) Simplest - in YAML syntax

	Option 2) For Python developers - task as a class

	Option 3) Quick and elastic way in Python code of Makefile.py

	Please check Tasks API for interfaces description

	Global environment variables
	RKD_WHITELIST_GROUPS

	RKD_ALIAS_GROUPS

	RKD_UI

	RKD_AUDIT_SESSION_LOG

	RKD_BIN

	RKD_SYS_LOG_LEVEL

	RKD_IMPORTS

	Custom distribution
	Example

	Read more in global environment variables

	Tasks API
	Each task must implement a TaskInterface

	To include a task, wrap it in a declaration

	To create an alias for task or multiple tasks

	Execution context provides parsed shell arguments and environment variables

	Interaction with input and output

	Storing temporary files

	Parsing RKD syntax

	Testing

	Working with YAML files
	YAML parsing API

	FAQ

	API

	Creating installer wizards with RKD
	Concept

	Example Wizard

	Using Wizard results internally

	Example of loading stored values by other task

	API

	Good practices
	Do not use os.getenv()

	Define your environment variables

	Use sh(), exec(), rkd() and silent_sh()

	Do not print if you do not must, use io()

	Process isolation and permissions changing with sudo
	Mechanism

	Permissions changing with sudo

	Future usage

	Docker entrypoints under control
	Environment variables

	Arguments propagation

	Tasks customization

	Massive files rendering with JINJA2

	Privileges dropping

	Testing with unittest
	Example: Running a task on a fully featured RKD executor

	Example: Mocking RKD-specific dependencies in TaskInterface

	Documentation

	Built-in tasks
	Shell
	:sh

	:exec

	Class to import: BaseShellCommandWithArgumentParsingTask

	Technical/Core
	:init

	:tasks

	:version

	CallableTask

	:rkd:create-structure

	:file:line-in-file

	Python
	:py:publish

	:py:build

	:py:install

	:py:clean

	:py:unittest

	ENV
	:env:get

	:env:set

	JINJA
	:j2:render

	:j2:directory-to-directory

Beginners guide - on YAML syntax example

Where to place files

.rkd directory must always exists in your project. Inside .rkd directory you should place your makefile.yaml that will contain
all of the required tasks.

Just like in UNIX/Linux, and just like in Python - there is an environment variable RKD_PATH that allows to define
multiple paths to .rkd directories placed in other places - for example outside of your project. This gives a flexibility and possibility
to build system-wide tools installable via Python’s PIP.

Environment variables

RKD natively reads .env (called also “dot-env files”) at startup. You can define default environment values in .env, or in other .env-some-name files
that can be included in env_files section of the YAML.

Scope of environment variables

env_files and environment blocks can be defined globally, which will end in including that fact in each task, second possibility is to
define those blocks per task. Having both global and per-task block merges those values together and makes per-task more important.

Example

version: org.riotkit.rkd/yaml/v1
environment:
 PYTHONPATH: "/project"
tasks:
 :hello:
 description: Prints variables
 environment:
 SOME_VAR: "HELLO"
 steps: |
 echo "SOME_VAR is ${SOME_VAR}, PYTHONPATH is ${PYTHONPATH}"

Arguments parsing

Arguments parsing is a strong side of RKD. Each task has it’s own argument parsing, it’s own generated –help command.
Python’s argparse library is used, so Python programmers should feel like in home.

Example

version: org.riotkit.rkd/yaml/v1
environment:
 PYTHONPATH: "/project"
tasks:
 :hello:
 description: Prints your name
 arguments:
 "--name":
 required: true
 #option: store_true # for booleans/flags
 #default: "Unknown" # for default values
 steps: |
 echo "Hello ${ARG_NAME}"

rkd :hello --name Peter

Defining tasks in Python code

Defining tasks in Python gives wider possibilities - to access Python’s libraries, better handle errors, write less tricky code.
RKD has a similar concept to hashbangs in UNIX/Linux.

There are two supported hashbangs + no hashbang:

	#!python

	#!bash

	(just none there)

What can I do in such Python code? Everything! Import, print messages, execute shell commands, everything.

Example

version: org.riotkit.rkd/yaml/v1
environment:
 PYTHONPATH: "/project"
tasks:
 :hello:
 description: Prints your name
 arguments:
 "--name":
 required: true
 #option: store_true # for booleans/flags
 #default: "Unknown" # for default values
 steps: |
 #!python
 print('Hello %s' % ctx.get_arg('--name'))

Special variables

	this - instance of current TaskInterface implementation

	ctx - instance of ExecutionContext

Please check Tasks API for those classes reference.

YAML syntax reference

Let’s at the beginning start from analyzing an example.

version: org.riotkit.rkd/yaml/v1

optional: Import tasks from Python packages
This gives a possibility to publish tasks and share across projects, teams, organizations
imports:
 - rkt_utils.db.WaitForDatabaseTask

optional environment section would append those variables to all tasks
of course the tasks can overwrite those values in per-task syntax
environment:
 PYTHONPATH: "/project/src"

optional env files loaded there would append loaded variables to all tasks
of course the tasks can overwrite those values in per-task syntax
#env_files:
- .some-dotenv-file

tasks:
 :check-is-using-linux:
 description: Are you using Linux?
 # use sudo to become a other user, optional
 become: root
 steps:
 # steps can be defined as single step, or multiple steps
 # each step can be in a different language
 # each step can be a multiline string
 - "[[$(uname -s) == \"Linux\"]] && echo \"You are using Linux, cool\""
 - echo "step 2"
 - |
 #!python
 print('Step 3')

 :hello:
 description: Say hello
 arguments:
 "--name":
 help: "Your name"
 required: true
 #default: "Peter"
 #option: "store_true" # for booleans
 steps: |
 echo "Hello ${ARG_NAME}"

 if [[$(uname -s) == "Linux"]]; then
 echo "You are a Linux user"
 fi

imports - Imports external tasks installed via Python’ PIP. That’s the way to easily share code across projects

environment - Can define default values for environment variables. Environment section can be defined for all tasks, or per task

env_files - Includes .env files, can be used also per task

tasks - List of available tasks, each task has a name, descripton, list of steps (or a single step), arguments

Running the example:

	Create a .rkd directory

	Create .rkd/makefile.yaml file

	Paste/rewrite the example into the .rkd/makefile.yaml

	Run rkd :tasks from the directory where the .rkd directory is placed

	Run defined tasks rkd :hello :check-is-using-linux

Example projects using Makefile YAML syntax:

	Taiga docker image [https://github.com/riotkit-org/docker-taiga/blob/master/.rkd/makefile.yaml]

	Taiga Events docker image [https://github.com/riotkit-org/docker-taiga-events/blob/master/.rkd/makefile.yaml]

	K8S Workspace [https://github.com/riotkit-org/riotkit-do-example-kubernetes-workspace/blob/master/.rkd/makefile.yaml]

Extended usage - Makefile in Python syntax

Not only tasks can be written in Python code, but Makefile too - such makefile is called makefile.py, and placed in .rkd directory.

Example:

import os
from rkd.api.syntax import TaskAliasDeclaration as Task # RKD API (for defining shortcuts/aliases for whole tasks lists)
from rkd.api.syntax import TaskDeclaration # RKD API (for declaring usage of given task, importing it)
from rkd.api.contract import ExecutionContext # RKD API (one of dependencies - context gives us access to commandline arguments and environment variables)
from rkd_python import imports as PythonImports # group of imports (not all packages supports it, but most of them)
from rkd.standardlib.jinja import FileRendererTask # single task
from rkd.standardlib import CallableTask # Basic Python callable task for a little bit advanced usage
from .mypackage import MyTask # import your task from local package

def example_method(ctx: ExecutionContext, task: CallableTask) -> bool:
 os.system('xdg-open https://twitter.com/wrkclasshistory')
 return True

IMPORTS = [
 # We declare that we will use this task.
 # Declaration can take some additional arguments like args= or env=, to always append environment and/or commandline switches
 # regardless of if user used it
 TaskDeclaration(FileRendererTask()),
 # remember about the "," between tasks, it's an array/list ;)
 # TaskDeclaration(MyTask())

 TaskDeclaration(CallableTask(':read-real-history', example_method, description='Example task with simple Python code'))
]

IMPORTS += PythonImports()

TASKS = [
 # declared task-aliases. A Task Alias is a shortcut eg. ":release" that will expands to ":py:build :py:publish --username= (...)"
 # the best feature in task-aliases is that you can append and overwrite last commandline arguments, those will be added
 # at the end of the command
 Task(':release', description='Release to PyPI (snapshot when on master, release on tag)',
 to_execute=[
 ':py:build', ':py:publish', '--username=__token__', '--password=${PYPI_TOKEN}'
]),

 Task(':test', [':py:unittest'], description='Run unit tests'),
 Task(':docs', [':sh', '-c', ''' set -x
 cd docs
 rm -rf build
 sphinx-build -M html "source" "build"
 '''])
]

	The Python syntax is very flexible

	You can create your own local packages and import them here, create own advanced structure

	Possibility to declare aliases and adjust TaskDeclarations for advanced usage (YAML syntax does not offer this)

Example projects using Makefile.py syntax:

	TunMan [https://github.com/riotkit-org/tunman/blob/master/.rkd/makefile.py]

	RiotKit Harbor building scripts [https://github.com/riotkit-org/riotkit-harbor/blob/master/.rkd/makefile.py]

	RiotKit CI Utils [https://github.com/riotkit-org/ci-utils/blob/master/.rkd/makefile.yaml]

Check ADVANCED usage page for description of all environment variables, mechanisms, good practices and more

Commandline basics

RKD command-line usage is highly inspired by GNU Make and Gradle, but it has its own extended possibilities to
make your scripts smaller and more readable.

	Tasks are prefixed always with “:”.

	Each task can handle it’s own arguments (unique in RKD)

	“@” allows to propagate arguments to next tasks (unique in RKD)

Tasks arguments usage in shell and in scripts

Executing multiple tasks in one command:

rkd :task1 :task2

Multiple tasks with different switches:

rkd :task1 --hello :task2 --world --become=root

Second task will run as root user, additionally with --world parameter.

Tasks sharing the same switches

Both tasks will receive switch “–hello”

expands to:
:task1 --hello
:task2 --hello
rkd @ --hello :task1 :task2

handy, huh?

Advanced usage of shared switches

Operator “@” can set switches anytime, it can also clear or replace switches in NEXT TASKS.

expands to:
:task1 --hello
:task2 --hello
:task3
:task4 --world
:task5 --world
rkd @ --hello :task1 :task2 @ :task3 @ --world :task4 :task5

Written as a pipeline (regular bash syntax)

It’s exactly the same example as above, but written multiline. It’s recommended to write multiline commands if they are longer.

rkd @ --hello \
 :task1 \
 :task2 \
 @
 :task3 \
 @ --world \
 :task4 \
 :task5

Importing tasks

Tasks can be defined as installable Python’s packages that you can import in your Makefile

Please note:

	To import a group, the package you try to import need to hvve a defined imports() method inside of the package.

	The imported group does not need to import automatically dependend tasks (but it can, it is recommended), you need to read into the docs of specific package if it does so

1) Install a package

RKD defines dependencies using Python standards.

Example: Given we want to import tasks from package “rkt_armutils”.

echo "rkt_armutils==3.0" >> requirements.txt
pip install -r requirements.txt

Good practices:

	Use fixed versions eg. 3.0 or even 3.0.0 and upgrade only intentionally to reduce your work. Automatic updates, especially of major versions

could be unpredictable and possibly can break something time-to-time

How do I check latest version?:

	Simply install a package eg. pip install rkt_armutils, then do a pip show rkt_armutils and write the version

to the requirements.txt, or lookup a package first at https://pypi.org/project/rkt_armutils/ (where rkt_armutils is an example package)

2) In YAML syntax

Example: Given we want to import task “InjectQEMUBinaryIntoContainerTask”, or we want to import whole “rkt_armutils.docker” group

imports:
 # Import whole package, if the package defines a group import (method imports())
 - rkt_armutils.docker

 # Or import single task
 - rkt_armutils.docker.InjectQEMUBinaryIntoContainerTask

2) In Python syntax

Example: Given we want to import task “InjectQEMUBinaryIntoContainerTask”, or we want to import whole “rkt_armutils.docker” group

from rkd.api.syntax import TaskDeclaration
from rkt_armutils.docker import InjectQEMUBinaryIntoContainerTask

... (use "+" operator to append, remove "+" if you didn't define any import yet)
IMPORTS += [TaskDeclaration(InjectQEMUBinaryIntoContainerTask)]

3) Inline syntax

Tasks could be imported also in shell, for quick check, handy scripts, or for embedding inside other applications.

note: Those examples requires "rkt_utils" package from PyPI
RKD_IMPORTS="rkt_utils.docker" rkd :docker:tag
RKD_IMPORTS="rkt_utils.docker:rkt_ciutils.boatci:rkd_python" rkd :tasks

via commandline switch "--imports"
rkd --imports "rkt_utils.docker:rkt_ciutils.boatci:rkd_python" :tasks

Note: The significant difference between environment variable and commandline switch is that the environment variable
will be inherited into subshells of RKD, commandline argument not.

For more information about this environment variable check it’s documentation page: RKD_IMPORTS

Ready to go? Check Built-in tasks that you can import in your Makefile

ADVANCED usage

	Troubleshooting

	Loading priority
	Environment variables loading order from .env and from .rkd

	Environment variables loading order in YAML syntax

	Order of loading of makefile files in same .rkd directory

	Paths and inheritance

	Tasks execution

	Tasks development
	Option 1) Simplest - in YAML syntax

	Option 2) For Python developers - task as a class

	Option 3) Quick and elastic way in Python code of Makefile.py

	Please check Tasks API for interfaces description

	Global environment variables
	RKD_WHITELIST_GROUPS

	RKD_ALIAS_GROUPS

	RKD_UI

	RKD_AUDIT_SESSION_LOG

	RKD_BIN

	RKD_SYS_LOG_LEVEL

	RKD_IMPORTS

	Custom distribution
	Example

	Read more in global environment variables

	Tasks API
	Each task must implement a TaskInterface

	To include a task, wrap it in a declaration

	To create an alias for task or multiple tasks

	Execution context provides parsed shell arguments and environment variables

	Interaction with input and output

	Storing temporary files

	Parsing RKD syntax

	Testing

	Working with YAML files
	YAML parsing API

	FAQ

	API

	Creating installer wizards with RKD
	Concept

	Example Wizard

	Using Wizard results internally

	Example of loading stored values by other task

	API

	Good practices
	Do not use os.getenv()

	Define your environment variables

	Use sh(), exec(), rkd() and silent_sh()

	Do not print if you do not must, use io()

	Process isolation and permissions changing with sudo
	Mechanism

	Permissions changing with sudo

	Future usage

	Docker entrypoints under control
	Environment variables

	Arguments propagation

	Tasks customization

	Massive files rendering with JINJA2

	Privileges dropping

	Testing with unittest
	Example: Running a task on a fully featured RKD executor

	Example: Mocking RKD-specific dependencies in TaskInterface

	Documentation

Troubleshooting

	Output is corrupted or there is no output from a shell command executed inside of a task

The output capturing is under testing. The Python’s subprocess module is skipping “sys.stdout” and “sys.stderr” by writing directly to /dev/stdout and /dev/stderr, which makes output capturing difficult.

Run rkd in compat mode to turn off output capturing from shell commands:

RKD_COMPAT_SUBPROCESS=true rkd :some-task-here

Loading priority

Environment variables loading order from .env and from .rkd

Legend: Top is most important, the variables loaded on higher level are not overridden by lower level

	Operating system environment

	Current working directory .env file

	.env files from directories defined in RKD_PATH

Environment variables loading order in YAML syntax

Legend: Top - is most important

	Operating system environment

	.env file

	Per-task “environment” section

	Per-task “env_file” imports

	Global “environment” section

	Global “env_file” imports

Order of loading of makefile files in same .rkd directory

Legend: Lower has higher priority (next is appending changes to previous)

	*.py

	*.yaml

	*.yml

Paths and inheritance

RKD by default search for .rkd directory in current execution directory - ./.rkd.

The search order is following (from lower to higher load priority):

	RKD’s internals (we provide a standard tasks like :tasks, :init, :sh, :exec and more)

	/usr/lib/rkd

	User’s home ~/.rkd

	Current directory ./.rkd

	RKD_PATH

Custom path defined via environment variable

RKD_PATH allows to define multiple paths that would be considered in priority.

export RKD_PATH="/some/path:/some/other/path:/home/user/riotkit/.rkd-second"

How the makefiles are loaded?

Each makefile is loaded in order, next makefile can override tasks of previous.
That’s why we at first load internals, then your tasks.

Tasks execution

Tasks are executed one-by-one as they are specified in commandline or in TaskAlias declaration (commandline arguments).

rkd :task-1 :task-2 :task-3

	task-1

	task-2

	task-3

A –keep-going can be specified after given task eg. :task-2 –keep-going, to ignore a single task failure and in consequence allow to go to the next task regardless of result.

Tasks development

RKD has multiple approaches to define a task. The first one is simpler - in makefile in YAML or in Python.
The second one is a set of tasks as a Python package.

Option 1) Simplest - in YAML syntax

Definitely the simplest way to define a task is to use YAML syntax, it is recommended for beginning users.

Example 1:

version: org.riotkit.rkd/yaml/v1
imports:
 - rkd.standardlib.jinja.RenderDirectoryTask

tasks:
 # see this task in "rkd :tasks"
 # run with "rkd :examples:bash-test"
 :examples:bash-test:
 description: Execute an example command in bash - show only python related tasks
 steps: |
 echo "RKD_DEPTH: ${RKD_DEPTH} # >= 2 means we are running rkd-in-rkd"
 echo "RKD_PATH: ${RKD_PATH}"
 rkd --silent :tasks | grep ":py"

 # try "rkd :examples:arguments-test --text=Hello --test-boolean"
 :examples:arguments-test:
 description: Show example usage of arguments in Bash
 arguments:
 "--text":
 help: "Adds text message"
 required: True
 "--test-boolean":
 help: "Example of a boolean flag"
 action: store_true # or store_false
 steps:
 - |
 #!bash
 echo " ==> In Bash"
 echo " Text: ${ARG_TEXT}"
 echo " Boolean test: ${ARG_TEST_BOOLEAN}"
 - |
 #!python
 print(' ==> In Python')
 print(' Text: %s ' % ctx.args['text'])
 print(' Text: %s ' % str(ctx.args['test_boolean']))
 return True

 # run with "rkd :examples:list-standardlib-modules"
 :examples:list-standardlib-modules:
 description: List all modules in the standardlib
 steps:
 - |
 #!python
 ctx: ExecutionContext
 this: TaskInterface

 import os

 print('Hello world')
 print(os)
 print(ctx)
 print(this)

 return True

Example 2:

version: org.riotkit.rkd/yaml/v1

environment:
 GLOBALLY_DEFINED: "16 May 1966, seamen across the UK walked out on a nationwide strike for the first time in half a century. Holding solid for seven weeks, they won a reduction in working hours from 56 to 48 per week "

env_files:
 - env/global.env

tasks:
 :hello:
 description: |
 #1 line: 11 June 1888 Bartolomeo Vanzetti, Italian-American anarchist who was framed & executed alongside Nicola Sacco, was born.
 #2 line: This is his short autobiography:
 #3 line: https://libcom.org/library/story-proletarian-life

 environment:
 INLINE_PER_TASK: "17 May 1972 10,000 schoolchildren in the UK walked out on strike in protest against corporal punishment. Within two years, London state schools banned corporal punishment. The rest of the country followed in 1987."
 env_files: ['env/per-task.env']
 steps: |
 echo " >> ENVIRONMENT VARIABLES DEMO"
 echo "Inline defined in this task: ${INLINE_PER_TASK}\n\n"
 echo "Inline defined globally: ${GLOBALLY_DEFINED}\n\n"
 echo "Included globally - global.env: ${TEXT_FROM_GLOBAL_ENV}\n\n"
 echo "Included in task - per-task.env: ${TEXT_PER_TASK_FROM_FILE}\n\n"

Explanation of examples:

	“arguments” is an optional dict of arguments, key is the argument name, subkeys are passed directly to argparse

	“steps” is a mandatory list or text with step definition in Bash or Python language

	“description” is an optional text field that puts a description visible in “:tasks” task

	“environment” is a dict of environment variables that can be defined

	“env_files” is a list of paths to .env files that should be included

	“imports” imports a Python package that contains tasks to be used in the makefile and in shell usage

Option 2) For Python developers - task as a class

This way allows to create tasks in a structure of a Python module. Such task can be packaged, then published to eg. PyPI (or other private repository) and used in multiple projects.

Each task should implement methods of rkd.api.contract.TaskInterface interface, that’s the basic rule.

Following example task could be imported with path rkd.standardlib.ShellCommandTask, in your own task you would have a different package name instead of rkd.standardlib.

Example task from RKD standardlib:

class ShellCommandTask(TaskInterface):
 """Executes shell scripts"""

 def get_name(self) -> str:
 return ':sh'

 def get_group_name(self) -> str:
 return ''

 def configure_argparse(self, parser: ArgumentParser):
 parser.add_argument('--cmd', '-c', help='Shell command', required=True)

 def execute(self, context: ExecutionContext) -> bool:
 # self.sh() and self.io() are part of TaskUtilities via TaskInterface

 try:
 self.sh(context.get_arg('cmd'), capture=False)
 except CalledProcessError as e:
 self.io().error_msg(str(e))
 return False

 return True

Explanation of example:

	The docstring in Python class is what will be shown in :tasks as description. You can also define your description by implementing def get_description() -> str

	Name and group name defines a full name eg. :your-project:build

	def configure_argparse() allows to inject arguments, and –help description for a task - it’s a standard Python’s argparse object to use

	def execute() provides a context of execution, please read Tasks API chapter about it. In short words you can get commandline arguments, environment variables there.

	self.io() is providing input-output interaction, please use it instead of print, please read Tasks API chapter about it.

Option 3) Quick and elastic way in Python code of Makefile.py

Multiple Makefile files can be used at one time, you don’t have to choose between YAML and Python.
This opens a possibility to define more advanced tasks in pure Python, while you have most of the tasks in YAML.
It’s elastic - use YAML, or Python or both.

Let’s define then a task in Python in a simplest method.

Makefile.py

import os
from rkd.api.syntax import TaskDeclaration
from rkd.api.contract import ExecutionContext
from rkd.standardlib import CallableTask

def union_method(context: ExecutionContext) -> bool:
 os.system('xdg-open https://iwa-ait.org')
 return True

IMPORTS = [
 # just declare a task with a name + code as function! Yay, simple!
 TaskDeclaration(CallableTask(':create-union', union_method))
]

TASKS = []

Extended usage - Makefile in Python syntax.

Please check Tasks API for interfaces description

Global environment variables

Global switches designed to customize RKD per project. Put environment variables into your .env file, so you will no have
to prepend them in the commandline every time.

Read also about Environment variables loading order from .env and from .rkd

RKD_WHITELIST_GROUPS

Allows to show only selected groups in the “:tasks” list. All tasks from hidden groups are still callable.

Examples:

RKD_WHITELIST_GROUPS=:rkd, rkd :tasks
RKD_WHITELIST_GROUPS=:rkd rkd :tasks

RKD_ALIAS_GROUPS

Alias group names, so it can be shorter, or even group names could be not typed at all.

Notice: :tasks will rename a group with a first defined alias for this group

Examples:

RKD_ALIAS_GROUPS=":rkd->:r" rkd :tasks :r:create-structure
RKD_ALIAS_GROUPS=":rkd->" rkd :tasks :create-structure

RKD_UI

Allows to toggle (true/false) the UI - messages like “Executing task X” or “Task finished”, leaving only tasks stdout, stderr and logs.

RKD_AUDIT_SESSION_LOG

Logs output of each executed task, when set to “true”.

Example structure of logs:

Note: This example requires "rkd-harbor" package to be installed from PyPI
RKD_AUDIT_SESSION_LOG=true harbor :service:list # RiotKit Harbor is another project based on RKD

ls .rkd/logs/2020-06-11/11\:06\:02.068556/
task-1-init.log task-2-harbor_service_list.log

RKD_BIN

Defines a command that invokes RKD eg. rkd. When a custom distribution is present, then this value can different.
For example project RiotKit Harbor has it’s own command harbor, which is based on RKD, so the RKD_BIN=harbor would be defined
in such project.

RKD_BIN is automatically generated, when executing task in a separate process, but it can be also set globally.

RKD_SYS_LOG_LEVEL

Use for debugging. The variable is read in very early stage of RKD initialization, before :init task, and before context preparation.

RKD_SYS_LOG_LEVEL=debug rkd :tasks

RKD_IMPORTS

Allows to import a task, or group of tasks (module) inline, without need to create a Makefile.
Useful in daily tasks to create handy shortcuts, also very useful for testing tasks and embedding them inside other applications.

“:” character is a separator for multiple imports.

note: Those examples requires "rkt_utils" package from PyPI
RKD_IMPORTS="rkt_utils.docker" rkd :docker:tag
RKD_IMPORTS="rkt_utils.docker:rkt_ciutils.boatci:rkd_python" rkd :tasks

Custom distribution

RiotKit Do can be used as a transparent framework for writing tasks for various usage, especially for specialized usage.
To simplify usage for end-user RKD allows to create a custom distribution.

Custom distribution allows to:

	Define custom ‘binary’ name eg. “harbor” instead of “rkd”

	Hide unnecessary tasks in custom ‘binary’ (filter by groups - whitelist)

	Make shortcuts to tasks: Skip writing group name, make a group name to be appended by default

Example

import os
from rkd import main as rkd_main

def env_or_default(env_name: str, default: str):
 return os.environ[env_name] if env_name in os.environ else default

def main():
 os.environ['RKD_WHITELIST_GROUPS'] = env_or_default('RKD_WHITELIST_GROUPS', ':env,:harbor,')
 os.environ['RKD_ALIAS_GROUPS'] = env_or_default('RKD_ALIAS_GROUPS', '->:harbor')
 os.environ['RKD_UI'] = env_or_default('RKD_UI', 'false')
 rkd_main()

if __name__ == '__main__':
 main()

$ harbor :tasks
[global]
:sh # Executes shell scripts
:exec # Spawns a shell process
:init # :init task is executing ALWAYS. That's a technical, core task.
:tasks # Lists all enabled tasks
:version # Shows version of RKD and of all loaded tasks

[harbor]
:compose:ps # List all containers
:start # Create and start containers
:stop # Stop running containers
:remove # Forcibly stop running containers and remove (keeps volumes)
:service:list # Lists all defined containers in YAML files (can be limited by --profile selector)
:service:up # Starts a single service
:service:down # Brings down the service without deleting the container
:service:rm # Stops and removes a container and it's images
:pull # Pull images specified in containers definitions
:restart # Restart running containers
:config:list # Gets environment variable value
:config:enable # Enable a configuration file - YAML
:config:disable # Disable a configuration file - YAML
:prod:gateway:reload # Reload gateway, regenerate missing SSL certificates
:prod:gateway:ssl:status # Show status of SSL certificates
:prod:gateway:ssl:regenerate # Regenerate all certificates with force
:prod:maintenance:on # Turn on the maintenance mode
:prod:maintenance:off # Turn on the maintenance mode
:git:apps:update # Fetch a git repository from the remote
:git:apps:update-all # List GIT repositories
:git:apps:set-permissions # Make sure that the application would be able to write to allowed directories (eg. upload directories)
:git:apps:list # List GIT repositories

[env]
:env:get # Gets environment variable value
:env:set # Sets environment variable in the .env file

Use --help to see task environment variables and switches, eg. rkd :sh --help, rkd --help

Notices for above example:

	No need to type eg. :harbor:config:list - just :config:list (RKD_ALIAS_GROUPS used)

	No “rkd” group is displayed (RKD_WHITELIST_GROUPS used)

	There is no information about task name (RKD_UI used)

Read more in Global environment variables

Tasks API

Each task must implement a TaskInterface

	
class rkd.api.contract.TaskInterface

	
	
configure_argparse(parser: argparse.ArgumentParser)

	Allows a task to configure ArgumentParser (argparse)

	
copy_internal_dependencies(task)

	Allows to execute a task-in-task, by copying dependent services from one task to other task

	
exec(cmd: str, capture: bool = False, background: bool = False) → Optional[str]

	Starts a process in shell. Throws exception on error.
To capture output set capture=True

	NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess

	may be not catch properly into the logs

	
execute(context: rkd.api.contract.ExecutionContext) → bool

	Executes a task. True/False should be returned as return

	
format_task_name(name: str) → str

	Allows to add a fancy formatting to the task name, when the task is displayed eg. on the :tasks list

	
get_become_as() → str

	User name in UNIX/Linux system, optional.
When defined, then current task will be executed as this user (WARNING: a forked process would be started)

	
get_declared_envs() → Dict[str, Union[str, rkd.api.contract.ArgumentEnv]]

	Dictionary of allowed envs to override: KEY -> DEFAULT VALUE

	
get_full_name()

	Returns task full name, including group name

	
get_group_name() → str

	Group name where the task belongs eg. “:publishing”, can be empty.

	
get_name() → str

	Task name eg. “:sh”

	
io() → rkd.api.inputoutput.IO

	Gives access to Input/Output object

	
py(code: str = '', become: str = None, capture: bool = False, script_path: str = None, arguments: str = '') → Optional[str]

	Executes a Python code in a separate process

	NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess

	may be not catch properly into the logs

	
rkd(args: list, verbose: bool = False, capture: bool = False) → str

	Spawns an RKD subprocess

	NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess

	may be not catch properly into the logs

	
sh(cmd: str, capture: bool = False, verbose: bool = False, strict: bool = True, env: dict = None, use_subprocess: bool = False) → Optional[str]

	Executes a shell script in bash. Throws exception on error.
To capture output set capture=True

	NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess

	may be not catch properly into the logs

	
should_fork() → bool

	Decides if task should be ran in a separate Python process (be careful with it)

	
silent_sh(cmd: str, verbose: bool = False, strict: bool = True, env: dict = None) → bool

	sh() shortcut that catches errors and displays using IO().error_msg()

	NOTICE: Use instead of subprocess. Raw subprocess is less supported and output from raw subprocess

	may be not catch properly into the logs

	
static table(header: list, body: list, tablefmt: str = 'simple', floatfmt: str = 'g', numalign: str = 'decimal', stralign: str = 'left', missingval: str = '', showindex: str = 'default', disable_numparse: bool = False, colalign: str = None)

	Renders a table

	Parameters

	
	header –

	body –

	tablefmt –

	floatfmt –

	numalign –

	stralign –

	missingval –

	showindex –

	disable_numparse –

	colalign –

	Returns

	Formatted table as string

To include a task, wrap it in a declaration

	
class rkd.api.syntax.TaskDeclaration(task: rkd.api.contract.TaskInterface, env: Dict[str, str] = {}, args: List[str] = [])

	

To create an alias for task or multiple tasks

	
class rkd.api.syntax.TaskAliasDeclaration(name: str, to_execute: List[str], env: Dict[str, str] = {}, description: str = '')

	Allows to define a custom task name that triggers other tasks in proper order

Execution context provides parsed shell arguments and environment variables

	
class rkd.api.contract.ExecutionContext(declaration: rkd.api.contract.TaskDeclarationInterface, parent: Optional[rkd.api.contract.GroupDeclarationInterface] = None, args: Dict[str, str] = {}, env: Dict[str, str] = {}, defined_args: Dict[str, dict] = {})

	Defines which objects could be accessed by Task. It’s a scope of a single task execution.

	
get_arg(name: str) → Optional[str]

	Get argument or option

	Usage:

	ctx.get_arg(‘–name’) # for options
ctx.get_arg(‘name’) # for arguments

	Raises

	KeyError when argument/option was not defined

	Returns

	Actual value or default value

	
get_arg_or_env(name: str) → Optional[str]

	Provides value of user input

	Usage:

	get_arg_or_env(‘–file-path’) resolves into FILE_PATH env variable, and –file-path switch
(file_path in argparse)

	Behavior:

	When user provided explicitly switch eg. –history-id, then it’s value will be taken in priority.
If switch –history-id was not used, but user provided HISTORY_ID environment variable,
then it will be considered.

If no switch provided and no environment variable provided, but a switch has
default value - it would be returned.

If no switch provided and no environment variable provided, the switch does not have default,
but environment variable has a default value defined, it would be returned.

When the –switch has default value (user does not use it, or user sets it explicitly to default value),
and environment variable SWITCH is defined, then environment variable would be taken.

From RKD 2.1 the environment variable names can be mapped to any ArgParse switch.

Below example maps “COMMAND” environment variable to “–cmd” switch.

	Raises

	MissingInputException – When no switch and no environment variable was provided, then an exception is thrown.

	
get_env(name: str, switch: str = '', error_on_not_used: bool = False)

	Get environment variable value

Interaction with input and output

	
class rkd.api.inputoutput.IO

	Interacting with input and output - stdout/stderr/stdin, logging

	
capture_descriptors(target_files: List[str] = None, stream=None, enable_standard_out: bool = True)

	Capture stdout and stderr from a block of code - use with ‘with’

	
critical(text)

	Logger: critical

	
debug(text)

	Logger: debug

	
err(text)

	Standard error

	
errln(text)

	Standard error + newline

	
error(text)

	Logger: error

	
error_msg(text)

	Error message (optional output)

	
h1(text)

	Heading #1 (optional output)

	
h2(text)

	Heading #2 (optional output)

	
h3(text)

	Heading #3 (optional output)

	
h4(text)

	Heading #3 (optional output)

	
info(text)

	Logger: info

	
info_msg(text)

	Informational message (optional output)

	
is_silent() → bool

	Is output silent? In silent mode OPTIONAL MESSAGES are not shown

	
opt_out(text)

	Optional output - fancy output skipped in –silent mode

	
opt_outln(text)

	Optional output - fancy output skipped in –silent mode + newline

	
out(text)

	Standard output

	
outln(text)

	Standard output + newline

	
print_group(text)

	Prints a colored text inside brackets [text] (optional output)

	
print_line()

	Prints a newline

	
print_opt_line()

	Prints a newline (optional output)

	
print_separator()

	Prints a text separator (optional output)

	
success_msg(text)

	Success message (optional output)

	
warn(text)

	Logger: warn

Storing temporary files

	
class rkd.api.temp.TempManager(chdir: str = './.rkd/')

	Manages temporary files inside .rkd directory
Using this class you make sure your code is more safe to use on Continuous Integration systems (CI)

	Usage:

	path = self.temp.assign_temporary_file(mode=0o755)

	
assign_temporary_file(mode: int = 493) → str

	Assign a path for writing temporary files in RKD workspace

Note: The RKD is executing the finally_clean_up() at the end of each task

	Usage:

	
	try:

	path = RKDTemp.assign_temporary_file_path()
(…) some action there

	finally:

	RKDTemp.finally_clean_up()

	
finally_clean_up()

	Used to clean up all temporary files at the end of the code execution

TaskExecutor is running this method after each finished task

Parsing RKD syntax

Testing

	
class rkd.api.testing.BasicTestingCase(methodName='runTest')

	
	Provides minimum of:

	
	Doing backup of environment and cwd

	Methods for mocking task dependencies (RKD-specific like ExecutionContext)

	
environment(environ: dict)

	Mocks environment

	Example usage:

	
	with self.environment({‘RKD_PATH’: SCRIPT_DIR_PATH + ‘/../docs/examples/env-in-yaml/.rkd’}):

	…

	Parameters

	environ –

	Returns

	

	
static mock_execution_context(task: rkd.api.contract.TaskInterface, args: Dict[str, str] = None, env: Dict[str, str] = None, defined_args: Dict[str, dict] = None) → rkd.api.contract.ExecutionContext

	Prepares a simplified rkd.api.contract.ExecutionContext instance

	Parameters

	
	task –

	args –

	env –

	defined_args –

	Returns

	

	
static satisfy_task_dependencies(task: rkd.api.contract.TaskInterface, io: rkd.api.inputoutput.IO = None) → rkd.api.contract.TaskInterface

	Inserts required dependencies to your task that implements rkd.api.contract.TaskInterface

	Parameters

	
	task –

	io –

	Returns

	

	
setUp() → None

	Hook method for setting up the test fixture before exercising it.

	
tearDown() → None

	Hook method for deconstructing the test fixture after testing it.

	
class rkd.api.testing.FunctionalTestingCase(methodName='runTest')

	Provides methods for running RKD task or multiple tasks with output and exit code capturing.
Inherits OutputCapturingSafeTestCase.

	
execute_mocked_task_and_get_output(task: rkd.api.contract.TaskInterface, args=None, env=None) → str

	Run a single task, capturing it’s output in a simplified way.
There is no whole RKD bootstrapped in this operation.

	Parameters

	
	task (TaskInterface) –

	args (dict) –

	env (dict) –

	Returns

	

	
run_and_capture_output(argv: list, verbose: bool = False) → Tuple[str, int]

	Run task(s) and capture output + exit code.
Whole RKD from scratch will be bootstrapped there.

	Example usage:

	full_output, exit_code = self.run_and_capture_output([‘:tasks’])

	Parameters

	
	argv (list) – List of tasks, arguments, commandline switches

	verbose (bool) – Print all output also to stdout

	Returns

	

	
class rkd.api.testing.OutputCapturingSafeTestCase(methodName='runTest')

	Provides hooks for keeping stdout/stderr immutable between tests.

	
setUp() → None

	Hook method for setting up the test fixture before exercising it.

	
tearDown() → None

	Hook method for deconstructing the test fixture after testing it.

Working with YAML files

Makefile.yaml has checked syntax before it is parsed by RKD. A jsonschema library was used to validate YAML files
against a JSON formatted schema file.

This gives the early validation of typing inside of YAML files, and a clear message to the user about place where the typo is.

YAML parsing API

Schema validation is a part of YAML parsing, the preferred way of working with YAML files is to not only parse the schema
but also validate. In result of this there is a class that wraps yaml library - rkd.yaml_parser.YamlFileLoader,
use it instead of plain yaml library.

Notice: The YAML and schema files are automatically searched in .rkd, .rkd/schema directories, including RKD_PATH

Example usage:

from rkd.yaml_parser import YamlFileLoader

parsed = YamlFileLoader([]).load_from_file('deployment.yml', 'org.riotkit.harbor/deployment/v1')

FAQ

	FileNotFoundError: Schema “my-schema-name.json” cannot be found, looked in: [‘…/riotkit-harbor’, ‘/…/riotkit-harbor/schema’, ‘/…/riotkit-harbor/.rkd/schema’, ‘/home/…/.rkd/schema’, ‘/usr/lib/rkd/schema’, ‘/usr/lib/python3.8/site-packages/rkd/internal/schema’]

The schema file cannot be found, the name is invalid or file missing. The schema should be placed somewhere in the .rkd/schema directory - in global, in home directory or in project.

	rkd.exception.YAMLFileValidationError: YAML schema validation failed at path “tasks” with error: [] is not of type ‘object’

It means you created a list (starts with “-“) instead of dictionary at “tasks” path.

Example what went wrong:

tasks:
 - description: first
 - description: second

Example how it should be as an ‘object’:

tasks:
 first:
 description: first

 second:
 description: second

API

	
class rkd.yaml_parser.YamlFileLoader(paths: List[str])

	YAML loader extended by schema validation support

YAML schema is stored as JSON files in .rkd/schema directories.
The Loader looks in all paths defined in RKD_PATH as well as in paths provided by ApplicationContext

	
find_path_by_name(filename: str, subdir: str) → str

	Find schema in one of RKD directories or in current path

	
load(stream, schema_name: str)

	Loads a YAML, validates and return parsed as dict/list

	
load_from_file(filename: str, schema_name: str)

	Loads a YAML file from given path, a wrapper to load()

Creating installer wizards with RKD

Wizard is a component designed to create comfortable installers, where user has to answer a few questions
to get the task done.

Concept

	User answers questions invoked by ask() method calls

	At the end the finish() is called, which acts as a commit, saves answers into .rkd/tmp-wizard.json by default and into the .env file (depends on if to_env=true was specified)

	Next RKD task executed can read .rkd/tmp-wizard.json looking for answers, the answers placed in .env are already loaded automatically as part of standard mechanism of environment variables support

Example Wizard

from rkd.api.inputoutput import Wizard

self is the TaskInterface instance, in Makefile.yaml it would be "this", in Python code it is "self"
Wizard(self)\
 .ask('Service name', attribute='service_name', regexp='([A-Za-z0-9_]+)', default='redis')\
 .finish()

Service name [([A-Za-z0-9_]+)] [default: redis]:
 -> redis

Example of application that is using Wizard to ask interactive questions

[image: ../_images/demo.gif]

Using Wizard results internally

Wizard is designed to keep the data on the disk, so you can access it in any other task executed, but this is not mandatory.
You can skip committing changes to disk by not using finish() which is flushing data to json and to .env files.

Use wizard.answers to see all answers that would be put into json file, and wizard.to_env to browse all environment variables that would be set in .env if finish() would be used.

Example of loading stored values by other task

Wizard stores values into file and into .env file, so it can read it from file after it was stored there.
This allows you to separate Wizard questions into one RKD task, and the rest of logic/steps into other RKD tasks.

from rkd.api.inputoutput import Wizard

... assuming that previously the Wizard was completed by user and the finish() method was called ...

wizard = Wizard(self)
wizard.load_previously_stored_values()

print(wizard.answers, wizard.to_env)

API

	
class rkd.api.inputoutput.Wizard(task: TaskInterface, filename: str = 'tmp-wizard.json')

	
	
ask(title: str, attribute: str, regexp: str = '', to_env: bool = False, default: str = None, choices: list = [], secret: bool = False) → rkd.api.inputoutput.Wizard

	Asks user a question

	Usage:

	wizard = Wizard(self)
wizard.ask(‘In which year the Spanish social revolution has begun?’,

attribute=’year’,
choices=[‘1936’, ‘1910’])

wizard.finish()

	
finish() → rkd.api.inputoutput.Wizard

	Commit all pending changes into json and .env files

	
input(secret: bool = False)

	Extracted for unit testing to be possible easier

	
load_previously_stored_values()

	Load previously saved values

Good practices

Do not use os.getenv()

Note: Only in Python code

The ExecutionContext is providing processed environment variables. Variables could be overridden on some levels
eg. in makefile.py - rkd.api.syntax.TaskAliasDeclaration can take a dict of environment variables to force override.

Use context.get_env() instead.

Define your environment variables

Note: Only in Python code

By using context.get_env() you are enforced to implement a TaskInterface.get_declared_envs() returning
a list of all environment variables used in your task code.

All defined environment variables will land in –help, which is considered as a task self-documentation.

Use sh(), exec(), rkd() and silent_sh()

Using raw subprocess will make your commands output invisible in logs, as the subprocess is writting directly to stdout/stderr skipping sys.stdout and sys.stderr.
The methods provided by RKD are buffering the output and making it possible to save to both file and to console.

Do not print if you do not must, use io()

rkd.api.inputoutput.IO provides a standardized way of printing messages. The class itself distinct importance of messages, writing them
to proper stdout/stderr and to log files.

print is also captured by IO, but should be used only eventually.

Process isolation and permissions changing with sudo

Alternatively called “forking” is a feature of RKD similar to Gradle’s JVM forking - the task can be run in a separate
Python’s process. This gives a possibility to run specific task as a specific user (eg. upgrade permissions to ROOT or downgrade to regular user)

Mechanism

RKD uses serialization to transfer data between processes - a standard pickle library is used.
Pickle has limitations on what can be serialized - any inner-methods and lambdas cannot be returned by task.

To test if your task is compatible with running as a separate process simply add --become=USER-NAME to the commandline of your task.
If it will fail due to serialization issue, then you will be notified with a nice stacktrace.

Technically the mechanism works on the task executor level, it means that process isolation is independent of the programming language as
whole task’s execute() is ran in a separate process, even if task is declared in YAML and has Bash steps.

Permissions changing with sudo

YAML syntax allows to define additional attribute become, that if defined then makes whole task to execute inside a separate
Python process ran with sudo.

Additionally the RKD commandline supports a per-task parameter --become

Future usage

The mechanism is universal, it can be possibly used to sandbox, or even to execute tasks remotely.
Currently we do not support such features but we do not say its impossible in the future.

Docker entrypoints under control

RKD has enough small footprint so that it can be used as an entrypoint in docker containers.
There are a few features that are making RKD very attractive to use in this role.

Environment variables

Defined commandline --my-switch can have optionally overridden value with environment variable. In docker it can help easily adjusting default values.

Task needs to create an explicit declaration of environment variable:

def get_declared_envs(self) -> Dict[str, ArgumentEnv]:
 return {
 'MY_SWITCH': ArgumentEnv(name='MY_SWITCH', switch='--switch-name', default=''),
 }

def execute(self, ctx: ExecutionContext) -> bool:
 # this one will look for a switch value, if switch has default value, then it will look for an environment variable
 ctx.get_arg_or_env('--my-switch')

Arguments propagation

When setting ENTRYPOINT ["rkd", ":entrypoint"] everything that will be passed as docker’s CMD will be passed to rkd, so additional tasks and arguments can be appended.

Tasks customization

It is a good practice to split your entrypoint into multiple tasks executed one-by-one.
This gives you a possibility to create new makefile.yaml/py in any place and modify RKD_PATH environment variable to add additional tasks or replace existing.
The RKD_PATH has always higher priority than current .rkd directory.

Possible options:

	Create a bind-mount volume with additional .rkd/makefile.yaml, add .rkd/makefile.yaml into container and set RKD_PATH to point to .rkd directory

	Create new docker image having original in FROM, add .rkd/makefile.yaml into container and set RKD_PATH to point to .rkd directory

Massive files rendering with JINJA2

:j2:directory-to-directory is a specially designed task to render JINJA2 templates recursively preserving a directory structure.
You can create for example templates/etc/nginx/nginx.conf.j2 and render ./templates/etc into /etc with all files being copied on the fly.

All jinja2 templates will have access to environment variables - with templating syntax you can define very advanced configuration files

Privileges dropping

Often in entrypoint there are cache/uploads permissions corrected, so the root user is used. To migrate the application, to run the webserver the privileges could be dropped.

Solutions:

	In YAML syntax each task have a possible field to use: become: user-name-here

	In Python class TaskInterface has method get_become_as() that should return empty string or a username to use sudo with

	In commandline there is a switch --become=user-name-here that can be used with most of the tasks

Testing with unittest

rkd.api.testing provides methods for running tasks with output capturing, a well as mocking RKD classes for unit testing of your task methods.
To use our API just extend one of base classes.

Example: Running a task on a fully featured RKD executor

#!/usr/bin/env python3

import os
from rkd.api.testing import FunctionalTestingCase

SCRIPT_DIR_PATH = os.path.dirname(os.path.realpath(__file__))

class TestFunctional(FunctionalTestingCase):
 """
 Functional tests case of the whole application.
 Runs application like from the shell, captures output and performs assertions on the results.
 """

 def test_tasks_listing(self):
 """ :tasks """

 full_output, exit_code = self.run_and_capture_output([':tasks'])

 self.assertIn(' >> Executing :tasks', full_output)
 self.assertIn('[global]', full_output)
 self.assertIn(':version', full_output)
 self.assertIn('succeed.', full_output)
 self.assertEqual(0, exit_code)

Example: Mocking RKD-specific dependencies in TaskInterface

from rkd.api.inputoutput import BufferedSystemIO
from rkd.api.testing import FunctionalTestingCase

...

class SomeTestCase(FunctionalTestingCase):

 # ...

 def test_something_important(self):
 task = LineInFileTask() # put your task class there
 io = BufferedSystemIO()

 BasicTestingCase.satisfy_task_dependencies(task, io=io)

 self.assertEqual('something', task.some_method())

Documentation

	
class rkd.api.testing.BasicTestingCase(methodName='runTest')

	
	Provides minimum of:

	
	Doing backup of environment and cwd

	Methods for mocking task dependencies (RKD-specific like ExecutionContext)

	
environment(environ: dict)

	Mocks environment

	Example usage:

	
	with self.environment({‘RKD_PATH’: SCRIPT_DIR_PATH + ‘/../docs/examples/env-in-yaml/.rkd’}):

	…

	Parameters

	environ –

	Returns

	

	
static mock_execution_context(task: rkd.api.contract.TaskInterface, args: Dict[str, str] = None, env: Dict[str, str] = None, defined_args: Dict[str, dict] = None) → rkd.api.contract.ExecutionContext

	Prepares a simplified rkd.api.contract.ExecutionContext instance

	Parameters

	
	task –

	args –

	env –

	defined_args –

	Returns

	

	
static satisfy_task_dependencies(task: rkd.api.contract.TaskInterface, io: rkd.api.inputoutput.IO = None) → rkd.api.contract.TaskInterface

	Inserts required dependencies to your task that implements rkd.api.contract.TaskInterface

	Parameters

	
	task –

	io –

	Returns

	

	
setUp() → None

	Hook method for setting up the test fixture before exercising it.

	
tearDown() → None

	Hook method for deconstructing the test fixture after testing it.

	
class rkd.api.testing.FunctionalTestingCase(methodName='runTest')

	Provides methods for running RKD task or multiple tasks with output and exit code capturing.
Inherits OutputCapturingSafeTestCase.

	
execute_mocked_task_and_get_output(task: rkd.api.contract.TaskInterface, args=None, env=None) → str

	Run a single task, capturing it’s output in a simplified way.
There is no whole RKD bootstrapped in this operation.

	Parameters

	
	task (TaskInterface) –

	args (dict) –

	env (dict) –

	Returns

	

	
run_and_capture_output(argv: list, verbose: bool = False) → Tuple[str, int]

	Run task(s) and capture output + exit code.
Whole RKD from scratch will be bootstrapped there.

	Example usage:

	full_output, exit_code = self.run_and_capture_output([‘:tasks’])

	Parameters

	
	argv (list) – List of tasks, arguments, commandline switches

	verbose (bool) – Print all output also to stdout

	Returns

	

	
class rkd.api.testing.OutputCapturingSafeTestCase(methodName='runTest')

	Provides hooks for keeping stdout/stderr immutable between tests.

	
setUp() → None

	Hook method for setting up the test fixture before exercising it.

	
tearDown() → None

	Hook method for deconstructing the test fixture after testing it.

Built-in tasks

	Shell
	:sh

	:exec

	Class to import: BaseShellCommandWithArgumentParsingTask

	Technical/Core
	:init

	:tasks

	:version

	CallableTask

	:rkd:create-structure

	:file:line-in-file

	Python
	:py:publish

	:py:build

	:py:install

	:py:clean

	:py:unittest

	ENV
	:env:get

	:env:set

	JINJA
	:j2:render

	:j2:directory-to-directory

Shell

Provides tasks for shell commands execution - mostly used in YAML syntax and in Python modules.

:sh

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib.shell [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.shell.ShellCommandTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Executes a Bash script. Can be multi-line.

Notice: phrase %RKD% is replaced with an rkd binary name

Example of plain usage:

rkd :sh -c "ps aux"
rkd :sh --background -c "some-heavy-task"

Example of task alias usage:

from rkd.api.syntax import TaskAliasDeclaration as Task

#
Example of Makefile-like syntax
#

IMPORTS = []

TASKS = [
 Task(':find-images', [
 ':sh', '-c', 'find ../../ -name \'*.png\''
]),

 Task(':build', [':sh', '-c', ''' set -x;
 cd ../../../

 chmod +x setup.py
 ./setup.py build

 ls -la
 ''']),

 # https://github.com/riotkit-org/riotkit-do/issues/43
 Task(':hello', [':sh', '-c', 'echo "Hello world"']),
 Task(':alias-in-alias-test', [':hello'])
]

:exec

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib.shell [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.shell.ExecProcessCommand [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Works identically as :sh, but for spawns a single process. Does not allow a multi-line script syntax.

Class to import: BaseShellCommandWithArgumentParsingTask

Creates a command that executes bash script and provides argument parsing using Python’s argparse.
Parsed arguments are registered as ARG_{{argument_name}} eg. –activity-type would be exported as ARG_ACTIVITY_TYPE.

IMPORTS += [
 BaseShellCommandWithArgumentParsingTask(
 name=":protest",
 group=":activism",
 description="Take action!",
 arguments_definition=lambda argparse: (
 argparse.add_argument('--activity-type', '-t', help='Select an activity type')
),
 command='''
 echo "Let's act! Let's ${ARG_ACTIVITY_TYPE}!"
 '''
)
]

Technical/Core

:init

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.InitTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

This task runs ALWAYS. :init implements a possibility to inherit global settings to other tasks

:tasks

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.TasksListingTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Lists all tasks that are loaded by all chained makefile.py configurations.

Environment variables:

	RKD_WHITELIST_GROUPS: (Optional) Comma separated list of groups to only show on the list

	RKD_ALIAS_GROUPS: (Optional) Comma separated list of groups aliases eg. “:international-workers-association->:iwa,:anarchist-federation->:fa”

:version

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.VersionTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Shows version of RKD and lists versions of all loaded tasks, even those that are provided not by RiotKit.
The version strings are taken from Python modules as RKD strongly rely on Python Packaging.

CallableTask

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.CallableTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

This is actually not a task to use directly, it is a template of a task to implement yourself. It’s kind of a shortcut
to create a task by defining a simple method as a callback.

import os
from rkd.api.syntax import TaskDeclaration
from rkd.api.contract import ExecutionContext
from rkd.standardlib import CallableTask

def union_method(context: ExecutionContext) -> bool:
 os.system('xdg-open https://iwa-ait.org')
 return True

IMPORTS = [
 TaskDeclaration(CallableTask(':create-union', union_method))
]

TASKS = []

	
class rkd.standardlib.CallableTask(name: str, callback: Callable[[rkd.api.contract.ExecutionContext, rkd.api.contract.TaskInterface], bool], args_callback: Callable[[argparse.ArgumentParser], None] = None, description: str = '', group: str = '', become: str = '', argparse_options: List[rkd.api.contract.ArgparseArgument] = None)

	Executes a custom callback - allows to quickly define a short task

	
configure_argparse(parser: argparse.ArgumentParser)

	Allows a task to configure ArgumentParser (argparse)

	
execute(context: rkd.api.contract.ExecutionContext) → bool

	Executes a task. True/False should be returned as return

	
get_become_as() → str

	User name in UNIX/Linux system, optional.
When defined, then current task will be executed as this user (WARNING: a forked process would be started)

	
get_declared_envs() → Dict[str, str]

	Dictionary of allowed envs to override: KEY -> DEFAULT VALUE

	
get_group_name() → str

	Group name where the task belongs eg. “:publishing”, can be empty.

	
get_name() → str

	Task name eg. “:sh”

:rkd:create-structure

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.CreateStructureTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Creates a template structure used by RKD in current directory.

API for developers:

This task is extensible by class inheritance, you can override methods to implement your own task with changed behavior.
It was designed to allow to create customized installers for tools based on RKD (custom RKD distributions), the example is RiotKit Harbor.

Look for “interface methods” in class code, those methods are guaranteed to not change from minor version to minor version.

	
class rkd.standardlib.CreateStructureTask

	Creates a RKD file structure in current directory

This task is designed to be extended, see methods marked as “interface methods”.

	
configure_argparse(parser: argparse.ArgumentParser)

	Allows a task to configure ArgumentParser (argparse)

	
execute(ctx: rkd.api.contract.ExecutionContext) → bool

	Executes a task. True/False should be returned as return

	
get_group_name() → str

	Group name where the task belongs eg. “:publishing”, can be empty.

	
get_name() → str

	Task name eg. “:sh”

	
get_patterns_to_add_to_gitignore(ctx: rkd.api.contract.ExecutionContext) → list

	List of patterns to write to .gitignore

Interface method: to be overridden

	
on_creating_venv(ctx: rkd.api.contract.ExecutionContext) → None

	When creating virtual environment

Interface method: to be overridden

	
on_files_copy(ctx: rkd.api.contract.ExecutionContext) → None

	When files are copied

Interface method: to be overridden

	
on_git_add(ctx: rkd.api.contract.ExecutionContext) → None

	Action on, when adding files via git add

Interface method: to be overridden

	
on_requirements_txt_write(ctx: rkd.api.contract.ExecutionContext) → None

	After requirements.txt file is written

Interface method: to be overridden

	
on_startup(ctx: rkd.api.contract.ExecutionContext) → None

	When the command is triggered, and the git is not dirty

Interface method: to be overridden

	
print_success_msg(use_pipenv: bool, ctx: rkd.api.contract.ExecutionContext) → None

	Emits a success message

Interface method: to be overridden

:file:line-in-file

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.LineInFileTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Similar to the Ansible’s lineinfile, replaces/creates/deletes a line in file.

Example usage:

echo "Number: 10" > test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert='Number: $match[0] / new: 10'
cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert='Number: $match[0] / new: 6'
cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert='Number: 50'
cat test.txt

rkd -rl debug :file:line-in-file test.txt --regexp="Number: ([0-9]+)?(.*)" --insert='Number: $match[0] / new: 90'
cat test.txt

Python

This package was extracted from standardlib to rkd_python, but is maintained together with RKD as part of RKD core.

Set of Python-related tasks for building, testing and publishing Python packages.

[image: ../_images/python.png]

:py:publish

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd_python [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd_python.PublishTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd_python== SELECT VERSION [https://pypi.org/project/rkd_python/#history]

	[image: ../_images/rkd_python.svg]

Publish a package to the PyPI.

Example of usage:

rkd :py:publish --username=__token__ --password=.... --skip-existing --test

:py:build

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd_python [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd_python.BuildTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd_python== SELECT VERSION [https://pypi.org/project/rkd_python/#history]

	[image: ../_images/rkd_python.svg]

Runs a build through setuptools.

:py:install

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd_python [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd_python.InstallTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd_python== SELECT VERSION [https://pypi.org/project/rkd_python/#history]

	[image: ../_images/rkd_python.svg]

Installs the project as Python package using setuptools. Calls ./setup.py install.

:py:clean

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd_python [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd_python.CleanTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd_python== SELECT VERSION [https://pypi.org/project/rkd_python/#history]

	[image: ../_images/rkd_python.svg]

Removes all files related to building the application.

:py:unittest

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd_python [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd_python.UnitTestTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd_python== SELECT VERSION [https://pypi.org/project/rkd_python/#history]

	[image: ../_images/rkd_python.svg]

Runs Python’s built’in unittest module to execute unit tests.

Examples:

rkd :py:unittest
rkd :py:unittest -p some_test
rkd :py:unittest --tests-dir=../test

ENV

Manipulates the environment variables stored in a .env file

RKD is always loading an .env file on startup, those tasks in this package allows to manage variables stored in .env file in the scope of a project.

:env:get

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib.env [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.env.SetEnvTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Example of usage:

rkd :env:get --name COMPOSE_PROJECT_NAME

:env:set

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib.env [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.env.GetEnvTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Example of usage:

rkd :env:set --name COMPOSE_PROJECT_NAME --value hello
rkd :env:set --name COMPOSE_PROJECT_NAME --ask
rkd :env:set --name COMPOSE_PROJECT_NAME --ask --ask-text="Please enter your name:"

JINJA

Renders JINJA2 files, and whole directories of files. Allows to render by pattern.

All includes and extends are by default looking in current working directory path.

:j2:render

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib.jinja [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.jinja.FileRendererTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Renders a single file from JINJA2.

Example of usage:

rkd :j2:render -s SOURCE-FILE.yaml.j2 -o OUTPUT-FILE.yaml

:j2:directory-to-directory

	Package to import

	Single task to import

	PIP package to install

	Stable version

	rkd.standardlib.jinja [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	rkd.standardlib.jinja.FileRendererTask [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install rkd== SELECT VERSION [https://pypi.org/project/rkd/#history]

	[image: ../_images/rkd.svg]

Renders all files recursively in given directory to other directory.
Can remove source files after rendering them to the output files.

Note: Pattern is a regexp pattern that matches whole path, not only file name

Note: Exclude pattern is matching on SOURCE files, not on target files

Example usage:

rkd :j2:directory-to-directory \
 --source="/some/path/templates" \
 --target="/some/path/rendered" \
 --delete-source-files \
 --pattern="(.*).j2"

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | W
 | Y

A

 	
 	ask() (rkd.api.inputoutput.Wizard method)

 	
 	assign_temporary_file() (rkd.api.temp.TempManager method)

B

 	
 	BasicTestingCase (class in rkd.api.testing), [1]

C

 	
 	CallableTask (class in rkd.standardlib)

 	capture_descriptors() (rkd.api.inputoutput.IO method)

 	configure_argparse() (rkd.api.contract.TaskInterface method)

 	(rkd.standardlib.CallableTask method)

 	(rkd.standardlib.CreateStructureTask method)

 	
 	copy_internal_dependencies() (rkd.api.contract.TaskInterface method)

 	CreateStructureTask (class in rkd.standardlib)

 	critical() (rkd.api.inputoutput.IO method)

D

 	
 	debug() (rkd.api.inputoutput.IO method)

E

 	
 	environment() (rkd.api.testing.BasicTestingCase method), [1]

 	err() (rkd.api.inputoutput.IO method)

 	errln() (rkd.api.inputoutput.IO method)

 	error() (rkd.api.inputoutput.IO method)

 	error_msg() (rkd.api.inputoutput.IO method)

 	
 	exec() (rkd.api.contract.TaskInterface method)

 	execute() (rkd.api.contract.TaskInterface method)

 	(rkd.standardlib.CallableTask method)

 	(rkd.standardlib.CreateStructureTask method)

 	execute_mocked_task_and_get_output() (rkd.api.testing.FunctionalTestingCase method), [1]

 	ExecutionContext (class in rkd.api.contract)

F

 	
 	finally_clean_up() (rkd.api.temp.TempManager method)

 	find_path_by_name() (rkd.yaml_parser.YamlFileLoader method)

 	
 	finish() (rkd.api.inputoutput.Wizard method)

 	format_task_name() (rkd.api.contract.TaskInterface method)

 	FunctionalTestingCase (class in rkd.api.testing), [1]

G

 	
 	get_arg() (rkd.api.contract.ExecutionContext method)

 	get_arg_or_env() (rkd.api.contract.ExecutionContext method)

 	get_become_as() (rkd.api.contract.TaskInterface method)

 	(rkd.standardlib.CallableTask method)

 	get_declared_envs() (rkd.api.contract.TaskInterface method)

 	(rkd.standardlib.CallableTask method)

 	get_env() (rkd.api.contract.ExecutionContext method)

 	
 	get_full_name() (rkd.api.contract.TaskInterface method)

 	get_group_name() (rkd.api.contract.TaskInterface method)

 	(rkd.standardlib.CallableTask method)

 	(rkd.standardlib.CreateStructureTask method)

 	get_name() (rkd.api.contract.TaskInterface method)

 	(rkd.standardlib.CallableTask method)

 	(rkd.standardlib.CreateStructureTask method)

 	get_patterns_to_add_to_gitignore() (rkd.standardlib.CreateStructureTask method)

H

 	
 	h1() (rkd.api.inputoutput.IO method)

 	h2() (rkd.api.inputoutput.IO method)

 	
 	h3() (rkd.api.inputoutput.IO method)

 	h4() (rkd.api.inputoutput.IO method)

I

 	
 	info() (rkd.api.inputoutput.IO method)

 	info_msg() (rkd.api.inputoutput.IO method)

 	input() (rkd.api.inputoutput.Wizard method)

 	
 	IO (class in rkd.api.inputoutput)

 	io() (rkd.api.contract.TaskInterface method)

 	is_silent() (rkd.api.inputoutput.IO method)

L

 	
 	load() (rkd.yaml_parser.YamlFileLoader method)

 	
 	load_from_file() (rkd.yaml_parser.YamlFileLoader method)

 	load_previously_stored_values() (rkd.api.inputoutput.Wizard method)

M

 	
 	mock_execution_context() (rkd.api.testing.BasicTestingCase static method), [1]

O

 	
 	on_creating_venv() (rkd.standardlib.CreateStructureTask method)

 	on_files_copy() (rkd.standardlib.CreateStructureTask method)

 	on_git_add() (rkd.standardlib.CreateStructureTask method)

 	on_requirements_txt_write() (rkd.standardlib.CreateStructureTask method)

 	on_startup() (rkd.standardlib.CreateStructureTask method)

 	
 	opt_out() (rkd.api.inputoutput.IO method)

 	opt_outln() (rkd.api.inputoutput.IO method)

 	out() (rkd.api.inputoutput.IO method)

 	outln() (rkd.api.inputoutput.IO method)

 	OutputCapturingSafeTestCase (class in rkd.api.testing), [1]

P

 	
 	print_group() (rkd.api.inputoutput.IO method)

 	print_line() (rkd.api.inputoutput.IO method)

 	print_opt_line() (rkd.api.inputoutput.IO method)

 	
 	print_separator() (rkd.api.inputoutput.IO method)

 	print_success_msg() (rkd.standardlib.CreateStructureTask method)

 	py() (rkd.api.contract.TaskInterface method)

R

 	
 	rkd() (rkd.api.contract.TaskInterface method)

 	
 	run_and_capture_output() (rkd.api.testing.FunctionalTestingCase method), [1]

S

 	
 	satisfy_task_dependencies() (rkd.api.testing.BasicTestingCase static method), [1]

 	setUp() (rkd.api.testing.BasicTestingCase method), [1]

 	(rkd.api.testing.OutputCapturingSafeTestCase method), [1]

 	
 	sh() (rkd.api.contract.TaskInterface method)

 	should_fork() (rkd.api.contract.TaskInterface method)

 	silent_sh() (rkd.api.contract.TaskInterface method)

 	success_msg() (rkd.api.inputoutput.IO method)

T

 	
 	table() (rkd.api.contract.TaskInterface static method)

 	TaskAliasDeclaration (class in rkd.api.syntax)

 	TaskDeclaration (class in rkd.api.syntax)

 	
 	TaskInterface (class in rkd.api.contract)

 	tearDown() (rkd.api.testing.BasicTestingCase method), [1]

 	(rkd.api.testing.OutputCapturingSafeTestCase method), [1]

 	TempManager (class in rkd.api.temp)

W

 	
 	warn() (rkd.api.inputoutput.IO method)

 	
 	Wizard (class in rkd.api.inputoutput)

Y

 	
 	YamlFileLoader (class in rkd.yaml_parser)

	Package to import

	Single task to import

	PIP package to install

	Stable version

	{{ PKG_NAME }} [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	{{ PKG_CLASS_NAME }} [https://riotkit-do.readthedocs.io/en/latest/usage/importing-tasks.html#in-yaml-syntax]

	pip install {{ PKG_PIP }}== SELECT VERSION [https://pypi.org/project/{{PKG_PIP}}/#history]

	[image: https://badgen.net/pypi/v/{{PKG_PIP}}]

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/syntax.png
nment as input

description: Creates an initial adninistrative user end File using en

reate-user: flass FileRendererTask(TaskInterface): o

becone: django
environment:

| |
zrgu:iﬁgg T TH o |
DTS gy

| |

| |

def get_name(self) -> str:
return *:render’

def execute(self, context: ExecutionContext) -> bool:
source = context.get_arg('--source’)
output = context.get_arg(’--output’)

email”:
default: "examplegexample.org"

if not os.path.isfile(source):
self.i0().error_msg('Source file does not exist a
return False

| dnport django
| fron django.db.utils import IntegrityError
L

if output ! and not os.path.isdir(os.path.dirnang
self.sh(‘mkdir -p %s' % o0s.path.dirname(output)) |

django.setup()

fron django.contrib.auth.models inport User
with open(source, 'rb') as

try: todo: Support for .rkd directories in proper of
User.objects. create_superuser(usernane=ctx.get_arg(*~-usernany tpL = Environment(loader=FileSystemLoader(['./"

_____except Exception: . . _from stripa(f.read(),decode('utf-8'))

_images/python.png
(.venv) riotkit > rkd :py:clean :py:build
>> Executing :py:clean

+ rm -rf pbr.egg.info .eggs dist build

[The task "

py:clean” succeed.

>> Executing :py:build

running sdist

[pbr] Writing ChangeLog

[pbr] Generating ChangeLog

[pbr] ChangeLog complete (0.0s

[pbr] Generating AUTHORS

[pbr] AUTHORS complete (0.0s)

running egg_info

writing src/rkd. egg-info/PKG-INFO

writing dependency_links to src/rkd.egg-info/dependency_links.txt
writing entry points to src/rkd.egg-info/entry_points. txt
writing requirements to src/rkd.egg-info/requires.txt

writing top-level names to src/rkd.egg-info/top_level. txt
writing pbr to src/rkd.egg-info/pbr.json

[pbr] Processing SOURCES. txt

[pbr] In git context, generating filelist from git

warning: no previously-included files found matching '.gitignore
warning: no previously-included files found matching *.gitreview
warning: no previously-included files matching '*.pyc' found anywhere in distribution
writing manifest file 'src/rkd.egg-info/SOURCES. txt

[pbr] reno was not found or is too old. Skipping release notes

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 RiotKit-Do (RKD) usage and development manual

 		
 Beginners guide - on YAML syntax example

 		
 Where to place files

 		
 Environment variables

 		
 Arguments parsing

 		
 Defining tasks in Python code

 		
 YAML syntax reference

 		
 Extended usage - Makefile in Python syntax

 		
 Check Detailed usage manual page for description of all environment variables, mechanisms, good practices and more

 		
 Commandline basics

 		
 Tasks arguments usage in shell and in scripts

 		
 Importing tasks

 		
 1) Install a package

 		
 2) In YAML syntax

 		
 2) In Python syntax

 		
 3) Inline syntax

 		
 Ready to go? Check Built-in tasks that you can import in your Makefile

 		
 ADVANCED usage

 		
 Troubleshooting

 		
 Loading priority

 		
 Environment variables loading order from .env and from .rkd

 		
 Environment variables loading order in YAML syntax

 		
 Order of loading of makefile files in same .rkd directory

 		
 Paths and inheritance

 		
 Tasks execution

 		
 Tasks development

 		
 Option 1) Simplest - in YAML syntax

 		
 Option 2) For Python developers - task as a class

 		
 Option 3) Quick and elastic way in Python code of Makefile.py

 		
 Please check Tasks API for interfaces description

 		
 Global environment variables

 		
 RKD_WHITELIST_GROUPS

 		
 RKD_ALIAS_GROUPS

 		
 RKD_UI

 		
 RKD_AUDIT_SESSION_LOG

 		
 RKD_BIN

 		
 RKD_SYS_LOG_LEVEL

 		
 RKD_IMPORTS

 		
 Custom distribution

 		
 Example

 		
 Read more in global environment variables

 		
 Tasks API

 		
 Each task must implement a TaskInterface

 		
 To include a task, wrap it in a declaration

 		
 To create an alias for task or multiple tasks

 		
 Execution context provides parsed shell arguments and environment variables

 		
 Interaction with input and output

 		
 Storing temporary files

 		
 Parsing RKD syntax

 		
 Testing

 		
 Working with YAML files

 		
 YAML parsing API

 		
 FAQ

 		
 API

 		
 Creating installer wizards with RKD

 		
 Concept

 		
 Example Wizard

 		
 Using Wizard results internally

 		
 Example of loading stored values by other task

 		
 API

 		
 Good practices

 		
 Do not use os.getenv()

 		
 Define your environment variables

 		
 Use sh(), exec(), rkd() and silent_sh()

 		
 Do not print if you do not must, use io()

 		
 Process isolation and permissions changing with sudo

 		
 Mechanism

 		
 Permissions changing with sudo

 		
 Future usage

 		
 Docker entrypoints under control

 		
 Environment variables

 		
 Arguments propagation

 		
 Tasks customization

 		
 Massive files rendering with JINJA2

 		
 Privileges dropping

 		
 Testing with unittest

 		
 Example: Running a task on a fully featured RKD executor

 		
 Example: Mocking RKD-specific dependencies in TaskInterface

 		
 Documentation

 		
 Built-in tasks

 		
 Shell

 		
 :sh

 		
 :exec

 		
 Class to import: BaseShellCommandWithArgumentParsingTask

 		
 Technical/Core

 		
 :init

 		
 :tasks

 		
 :version

 		
 CallableTask

 		
 :rkd:create-structure

 		
 :file:line-in-file

 		
 Python

 		
 :py:publish

 		
 :py:build

 		
 :py:install

 		
 :py:clean

 		
 :py:unittest

 		
 ENV

 		
 :env:get

 		
 :env:set

 		
 JINJA

 		
 :j2:render

 		
 :j2:directory-to-directory

_images/demo.gif
Riotkit ||

_static/up-pressed.png

_static/up.png

